A multiplier theorem for H-type groups
Pini, Rita
Studia Mathematica, Tome 100 (1991), p. 39-49 / Harvested from The Polish Digital Mathematics Library

We prove an Lp-boundedness result for a convolution operator with rough kernel supported on a hyperplane of a group of Heisenberg type.

Publié le : 1991-01-01
EUDML-ID : urn:eudml:doc:215872
@article{bwmeta1.element.bwnjournal-article-smv100i1p39bwm,
     author = {Rita Pini},
     title = {A multiplier theorem for H-type groups},
     journal = {Studia Mathematica},
     volume = {100},
     year = {1991},
     pages = {39-49},
     zbl = {0735.43002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv100i1p39bwm}
}
Pini, Rita. A multiplier theorem for H-type groups. Studia Mathematica, Tome 100 (1991) pp. 39-49. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv100i1p39bwm/

[00000] [1] J. Bergh and J. Löfström, Interpolation Spaces, Springer, 1976. | Zbl 0344.46071

[00001] [2] M. Christ, Hilbert transforms along curves. I. Nilpotent groups, Ann. of Math. 122 (1985), 575-596. | Zbl 0593.43011

[00002] [3] R. R. Coifman and G. Weiss, Transference methods in harmonic analysis, CBMS Regional Conf. Ser. in Math. 31, Amer. Math. Soc., 1977. | Zbl 0371.43009

[00003] [4] M. Cowling, A remark on twisted convolution, Suppl. Rend. Circ. Mat. Palermo 1 (1981). 203 209

[00004] [5] J. Cygan, Subadditivity of homogeneous norms on certain nilpotent Lie groups, Proc. Amer. Math. Soc. 83 (1981), 69-70. | Zbl 0475.43010

[00005] [6] I. M. Gelfand and G. E. Shilov, Generalized Function I, Academic Press, 1964.

[00006] [7] D. Geller and E. M. Stein, Estimates for singular convolution operators on the Heisenberg group, Math. Ann. 267 (1984), 1-15. | Zbl 0537.43005

[00007] [8] R. Goodman, Singular integral operators on nilpotent Lie groups, Ark. Mat. 18 (1980), 1-11. | Zbl 0449.43008

[00008] [9] K. Hoffman and R. Kunze, Linear Algebra, Prentice-Hall, 1961.

[00009] [10] R. Howe, Quantum mechanics and partial differential operators, J. Funct. Anal. 38 (1980), 188-254. | Zbl 0449.35002

[00010] [11] A. Kaplan, Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms, Trans. Amer. Math. Soc. 258 (1980), 147-153. | Zbl 0393.35015

[00011] [12] A. Kaplan and F. Ricci, Harmonic analysis on groups of Heisenberg type, in: Lecture Notes in Math. 992, Springer, 1983, 416-435.

[00012] [13] D. Müller, Calderón-Zygmund kernels carried by linear subspaces of homogeneous nilpotent Lie algebras, invent. Math. 73 (1983), 467-489. | Zbl 0521.43009

[00013] [14] D. Müller, Singular kernels supported by homogeneous submanifolds, J. Reine Angew. Math. 356 (1985), 90-118. | Zbl 0551.43005

[00014] [15] F. Ricci, Calderón-Zygmund kernels on nilpotent Lie groups, in: Lecture Notes in Math. 908, Springer, 1982, 217-227.

[00015] [16] F. Ricci and E. M. Stein, Harmonic analysis on nilpotent groups and singular integrals. I. Oscillatory integrals, J. Funct. Anal. 73 (1987), 179-194. | Zbl 0622.42010

[00016] [17] F. Ricci and E. M. Stein, Harmonic analysis on nilpotent groups and singular integrals. II. Singular kernels supported on submanifolds, ibid. 78 (1988), 56-84. | Zbl 0645.42019

[00017] [18] F. Ricci and E. M. Stein, Harmonic analysis on nilpotent groups. III. Fractional integration along manifolds, ibid. 86 (1989), 360-389. | Zbl 0684.22006

[00018] [19] E. M. Stein and S. Wainger, Problems In harmonic analysis related to curvature, Bull. Amer. Math. Soc. 84 (1978), 1239-1295. | Zbl 0393.42010

[00019] [20] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton 1975. | Zbl 0232.42007

[00020] [21] R. Strichartz, Singular integrals on nilpotent Lie groups, Proc. Amer. Math. Soc. 53 (1975), 367-374. | Zbl 0322.43015