On separation theorems for subadditive and superadditive functionals
Gajda, Zbigniew ; Kominek, Zygfryd
Studia Mathematica, Tome 100 (1991), p. 25-38 / Harvested from The Polish Digital Mathematics Library

We generalize the well known separation theorems for subadditive and superadditive functionals to some classes of not necessarily Abelian semigroups. We also consider the problem of supporting subadditive functionals by additive ones in the not necessarily commutative case. Our results are motivated by similar extensions of the Hyers stability theorem for the Cauchy functional equation. In this context the so-called weakly commutative and amenable semigroups appear naturally. The relations between these two classes of semigroups are discussed at the end of the paper.

Publié le : 1991-01-01
EUDML-ID : urn:eudml:doc:215871
@article{bwmeta1.element.bwnjournal-article-smv100i1p25bwm,
     author = {Zbigniew Gajda and Zygfryd Kominek},
     title = {On separation theorems for subadditive and superadditive functionals},
     journal = {Studia Mathematica},
     volume = {100},
     year = {1991},
     pages = {25-38},
     zbl = {0739.39014},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv100i1p25bwm}
}
Gajda, Zbigniew; Kominek, Zygfryd. On separation theorems for subadditive and superadditive functionals. Studia Mathematica, Tome 100 (1991) pp. 25-38. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv100i1p25bwm/

[00000] [1] A. Chaljub-Simon und P. Volkmann, Bemerkungen zu einem Satz von Rodé, manuscript. | Zbl 0712.39029

[00001] [2] M. M. Day, Amenable semigroups, Illinois J. Math. 1 (1957), 509-544. | Zbl 0078.29402

[00002] [3] G. L. Forti, Remark 11, Report of Meeting, the 22nd Internat Symposium on Functional Equations, Aequationes Math. 29 (1985), 90-91.

[00003] [4] G. L. Forti, The stability of homomorphisms and amenability with applications to functional equations, Università degli Studi di Milano, Quaderno 24, 1986.

[00004] [5] Z. Gajda, Invariant means and representations of semigroups in the theory of functional equations, submitted.

[00005] [6] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Vol. I, Springer, Berlin 1963. | Zbl 0115.10603

[00006] [7] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224. | Zbl 0061.26403

[00007] [8] R. Kaufman, Interpolation of additive functionals, Studia Math. 27 (1966), 269-272. | Zbl 0143.36302

[00008] [9] H. König, On the abstract Hahn-Banach theorem due to Rodé, Aequationes Math. 34 (1987), 89-95. | Zbl 0636.46005

[00009] [10] P. Kranz, Additive functionals on abelian semigroups, Prace Mat. (Comment. Math.) 16 (1972), 239-246. | Zbl 0262.20087

[00010] [11] J. Rätz, On approximately additive mappings, in: General Inequalities 2, Internat. Ser. Numer. Math. 47, Birkhäuser, Basel 1980, 233-251. | Zbl 0433.39014

[00011] [12] G. Rodé, Eine abstrakte Version des Satzes von Hahn-Banach, Arch. Math. (Basel) 31 (1978), 474-481. | Zbl 0402.46003

[00012] [13] L. Székelyhidi, Remark 17, Report of Meeting, the 22nd Internat. Symposium on Functional Equations, Aequationes Math. 29 (1985), 95-96.

[00013] [14] J. Tabor, Remark 18, ibid., 96.