We construct, by a variation of the method used to construct the Tsirelson spaces, a new family of weak Hilbert spaces which contain copies of l₂ inside every subspace.
@article{bwmeta1.element.bwnjournal-article-smv100i1p1bwm, author = {Alec Edgington}, title = {Some more weak Hubert spaces}, journal = {Studia Mathematica}, volume = {100}, year = {1991}, pages = {1-11}, zbl = {0763.46011}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv100i1p1bwm} }
Edgington, Alec. Some more weak Hubert spaces. Studia Mathematica, Tome 100 (1991) pp. 1-11. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv100i1p1bwm/
[00000] [0] P. G. Casazza and T. J. Shura, Tsirelson's Space, Springer, 1989. | Zbl 0709.46008
[00001] [1] W. B. Johnson, A reflexive Banach space which is not sufficiently Euclidean, Studia Math. 55 (1976), 201-205. | Zbl 0362.46015
[00002] [2] J. Lindenstrauss and L. Tzafrim, Classical Banach Spaces II, Springer, 1979.
[00003] [3] V. D. Milman and G. Pisier, Banach spaces with a weak cotype 2 property, Israel J. Math. 54 (1986), 139-158. | Zbl 0611.46022
[00004] [4] G. Pisier, Weak Hilbert spaces, Proc. London Math. Soc. 56 (1988), 547-579.
[00005] [5] G. Pisier, The Volume of Convex Bodies and Banach Space Geometry, Cambridge Univ. Press, 1989. | Zbl 0698.46008