Vitali sets and Hamel bases that are Marczewski measurable
Miller, Arnold ; Popvassilev, Strashimir
Fundamenta Mathematicae, Tome 163 (2000), p. 269-279 / Harvested from The Polish Digital Mathematics Library

We give examples of a Vitali set and a Hamel basis which are Marczewski measurable and perfectly dense. The Vitali set example answers a question posed by Jack Brown. We also show there is a Marczewski null Hamel basis for the reals, although a Vitali set cannot be Marczewski null. The proof of the existence of a Marczewski null Hamel basis for the plane is easier than for the reals and we give it first. We show that there is no easy way to get a Marczewski null Hamel basis for the reals from one for the plane by showing that there is no one-to-one additive Borel map from the plane to the reals.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:212481
@article{bwmeta1.element.bwnjournal-article-fmv166i3p269bwm,
     author = {Arnold Miller and Strashimir Popvassilev},
     title = {Vitali sets and Hamel bases that are Marczewski measurable},
     journal = {Fundamenta Mathematicae},
     volume = {163},
     year = {2000},
     pages = {269-279},
     zbl = {0968.03051},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv166i3p269bwm}
}
Miller, Arnold; Popvassilev, Strashimir. Vitali sets and Hamel bases that are Marczewski measurable. Fundamenta Mathematicae, Tome 163 (2000) pp. 269-279. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv166i3p269bwm/

[00000] [1] C.Burstin, Die Spaltung des Kontinuums in in Lebesgueschem Sinne nichtmessbare Mengen, Sitzungsber. Akad. Wiss. Wien Math. Nat. Klasse Abt. IIa 125 (1916), 209-217. | Zbl 46.0293.02

[00001] [2] P.Erdős, On some properties of Hamel bases, Colloq. Math. 10 (1963), 267-269. | Zbl 0123.32001

[00002] [3] J.Feldman and C. C. Moore, Ergodic equivalence relations, cohomology, and von Neumann algebras I, Trans. Amer. Math. Soc. 234 (1977), 289-324. | Zbl 0369.22009

[00003] [4] F. B.Jones, Measure and other properties of a Hamel basis, Bull. Amer. Math. Soc. 48 (1942), 472-481. | Zbl 0063.03064

[00004] [5] A. S.Kechris, Classical Descriptive Set Theory, Grad. Texts in Math. 156, Springer, 1995.

[00005] [6] M.Kuczma, An introduction to the theory of functional equations and inequalities. Cauchy's equation and Jensen's inequality, Prace Nauk. Uniw. Śląsk. 489, Uniw. Śląski, Katowice, and PWN, Warszawa, 1985.

[00006] [7] A. W.Miller, Special subsets of the real line, in: Handbook of Set-Theoretic Topology, K. Kunen and J. E. Vaughan (eds.), Elsevier, 1984, 201-233.

[00007] [8] W.Sierpiński, Sur la question de la mesurabilité de la base de Hamel, Fund. Math. 1 (1920), 105-111.

[00008] [9] J. H.Silver, Counting the number of equivalence classes of Borel and coanalytic equivalence relations, Ann. Math. Logic 18 (1980), 1-28. | Zbl 0517.03018

[00009] [10] E.Szpilrajn (Marczewski), Sur une classe de fonctions de M. Sierpiński et la classe correspondante d'ensembles, Fund. Math. 24 (1935), 17-34. | Zbl 61.0229.01