A dichotomy concerning ideals of countable subsets of some set is introduced and proved compatible with the Continuum Hypothesis. The dichotomy has influence not only on the Suslin Hypothesis or the structure of Hausdorff gaps in the quotient algebra / but also on some higher order statements like for example the existence of Jensen square sequences.
@article{bwmeta1.element.bwnjournal-article-fmv166i3p251bwm, author = {Stevo Todor\v cevi\'c}, title = {A dichotomy for P-ideals of countable sets}, journal = {Fundamenta Mathematicae}, volume = {163}, year = {2000}, pages = {251-267}, zbl = {0968.03049}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv166i3p251bwm} }
Todorčević, Stevo. A dichotomy for P-ideals of countable sets. Fundamenta Mathematicae, Tome 163 (2000) pp. 251-267. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv166i3p251bwm/
[00000] [1] U. Abraham and S. Todorčević, Partition properties of compatible with CH, Fund. Math. 152 (1997), 165-181. | Zbl 0879.03015
[00001] [2] K. J. Devlin, The Yorkshireman's guide to proper forcing, in: Surveys in Set Theory, A. R. D. Mathias (ed.), Cambridge Univ. Press, 1983, 60-105.
[00002] [3] F. Hausdorff, Summen von Mengen, Fund. Math. 26 (1936), 241-255.
[00003] [4] J. Hirschorn, Random trees under CH, preprint, 1999.
[00004] [5] R. B. Jensen, The fine structure of the constructible hierarchy, Ann. Math. Logic 4 (1972), 229-308. | Zbl 0257.02035
[00005] [6] R. Laver, Making supercompactness indestructible under κ-directed forcing, Israel J. Math. 29 (1978), 385-388. | Zbl 0381.03039
[00006] [7] S. Shelah, Proper Forcing, Springer, 1982.
[00007] [8] S. Todorčević, Trees and linearly ordered sets, in: Handbook of Set-Theoretic Topology, K. Kunen and J. E. Vaughan (eds.), North-Holland, 1984, 235-293.
[00008] [9] S. Todorčević, Partitioning pairs of countable ordinals, Acta Math. 159 (1987), 261-294. | Zbl 0658.03028
[00009] [10] S. Todorčević, Partition Problems in Topology, Amer. Math. Soc., Providence, 1989. | Zbl 0659.54001
[00010] [11] S. Todorčević, Some applications of S and L combinatorics, Ann. New York Acad. Sci. 705 (1993), 130-167.