On what I do not understand (and have something to say): Part I
Shelah, Saharon
Fundamenta Mathematicae, Tome 163 (2000), p. 1-82 / Harvested from The Polish Digital Mathematics Library

This is a non-standard paper, containing some problems in set theory I have in various degrees been interested in. Sometimes with a discussion on what I have to say; sometimes, of what makes them interesting to me, sometimes the problems are presented with a discussion of how I have tried to solve them, and sometimes with failed tries, anecdotes and opinions. So the discussion is quite personal, in other words, egocentric and somewhat accidental. As we discuss many problems, history and side references are erratic, usually kept to a minimum ("see ..." means: see the references there and possibly the paper itself). The base were lectures in Rutgers, Fall '97, and reflect my knowledge then. The other half, [122], concentrating on model theory, will subsequently appear. I thank Andreas Blass and Andrzej Rosłanowski for many helpful comments.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:212475
@article{bwmeta1.element.bwnjournal-article-fmv166i1p1bwm,
     author = {Saharon Shelah},
     title = {On what I do not understand (and have something to say): Part I},
     journal = {Fundamenta Mathematicae},
     volume = {163},
     year = {2000},
     pages = {1-82},
     zbl = {0966.03044},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv166i1p1bwm}
}
Shelah, Saharon. On what I do not understand (and have something to say): Part I. Fundamenta Mathematicae, Tome 163 (2000) pp. 1-82. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv166i1p1bwm/

[00000] [1] U. Abraham, Aronszajn trees on 2 and 3, Ann. Pure Appl. Logic 24 (1983), 213-230.

[00001] [2] U. Abraham, M. Rubin and S. Shelah, On the consistency of some partition theorems for continuous colorings, and the structure of 1-dense real order types, Ann. Pure Appl. Logic 29 (1985), 123-206. | Zbl 0585.03019

[00002] [3] U. Abraham and S. Shelah, Isomorphism types of Aronszajn trees, Israel J. Math. 50 (1985), 75-113. | Zbl 0566.03032

[00003] [4] U. Abraham and S. Todorčević, Partition properties of ω1 compatible with CH, Fund. Math. 152 (1997), 165-181. | Zbl 0879.03015

[00004] [5] M. Ajtai, The complexity of the pigeonhole principle, Combinatorica 14 (1994), 417-433. | Zbl 0811.03042

[00005] [6] U. Avraham [U. Abraham], K. J. Devlin and S. Shelah, The consistency with CH of some consequences of Martin’s axiom plus 20>1, Israel J. Math. 31 (1978), 19-33. | Zbl 0382.03040

[00006] [7] T. Bartoszyński and H. Judah, Set Theory: On the Structure of the Real Line, A K Peters, Wellesley, MA, 1995. | Zbl 0834.04001

[00007] [8] T. Bartoszyński, A. Rosłanowski and S. Shelah, After all, there are some inequalities which are provable in ZFC, math.LO/9711222; J. Symbolic Logic 65 (2000), 803-816. | Zbl 0960.03042

[00008] [9] T. Bartoszyński, A. Rosłanowski and S. Shelah, Adding one random real, ibid. 61 (1996), 80-90;math.LO/9406229. | Zbl 0859.03023

[00009] [10] J. E. Baumgartner, Decomposition of embedding of trees, Notices Amer. Math. Soc. 17 (1970), 967.

[00010] [11] J. E. Baumgartner, All 1-dense sets of reals can be isomorphic, Fund. Math. 79 (1973), 101-106. | Zbl 0274.02037

[00011] [12] J. E. Baumgartner, Ultrafilters on ω, J. Symbolic Logic 60 (1995), 624-639. | Zbl 0834.04005

[00012] [13] J. Baumgartner, A. Hajnal and S. Todorčević, Extensions of the Erdős-Rado Theorems, in: Finite and Infinite Combinatorics in Set Theory and Logic, Kluwer, 1993, 1-18. | Zbl 0846.03021

[00013] [14] S. Ben David, On Shelah's compactness of cardinals, Israel J. Math. 31 (1978), 34-56 and 394. | Zbl 0384.03036

[00014] [16] A. Blass and S. Shelah, Ultrafilters with small generating sets, Israel J. Math. 65 (1989), 259-271. | Zbl 0681.03033

[00015] [17] R. Bonnet and D. Monk, Handbook of Boolean Algebras, Vols. 1-3, North-Holland, 1989.

[00016] [18] J. Brendle and S. Shelah, Ultrafilters on ω--their ideals and their cardinal characteristics, Trans. Amer. Math. Soc. 351 (1999), 2643-2674; math.LO/9710217. | Zbl 0927.03073

[00017] [19] T. J. Carlson, Strong measure zero and strongly meager sets, Proc. Amer. Math. Soc. 118 (1993), 577-586. | Zbl 0787.03037

[00018] [20] K. Ciesielski, Set theoretic real analysis, J. Appl. Anal. 3 (1997), 143-190. | Zbl 0901.26001

[00019] [21] K. Ciesielski and S. Shelah, Category analog of sub-measurability problem, ibid., to appear; math.LO/9905147.

[00020] [22] J. Cummings, M. Džamonja and S. Shelah, A consistency result on weak reflection, Fund. Math. 148 (1995), 91-100; math.LO/9504221. | Zbl 0830.03024

[00021] [23] J. Cummings and M. Foreman, The tree property, Adv. Math. 133 (1998), 1-32. | Zbl 0949.03039

[00022] [25] J. Cummings and S. Shelah, Cardinal invariants above the continuum, Ann. Pure Appl. Logic 75 (1995), 251-268; math.LO/9509228. | Zbl 0835.03013

[00023] [26] K. J. Devlin and S. Shelah, A weak version of ◊ which follows from 20<21, Israel J. Math. 29 (1978), 239-247. | Zbl 0403.03040

[00024] [27] T. Dodd and R. B. Jensen, The covering lemma for K, Ann. Math. Logic 22 (1982), 1-30. | Zbl 0492.03014

[00025] [30] M. Džamonja and S. Shelah, On squares, outside guessing of clubs and I<f[λ], Fund. Math. 148 (1995), 165-198; math.LO/9510216. | Zbl 0839.03031

[00026] [31] M. Džamonja and S. Shelah, Saturated filters at successors of singulars, weak reflection and yet another weak club principle, Ann. Pure Appl. Logic 79 (1996), 289-316; math.LO/9601219. | Zbl 0874.03059

[00027] [32] P. C. Eklof and A. Mekler, Almost Free Modules; Set Theoretic Methods, North-Holland Library, 1990. | Zbl 0718.20027

[00028] [33] P. Erdős and A. Hajnal, Unsolved problems in set theory, in: Axiomatic Set Theory, Proc. Sympos. Pure Math., 13, part I, Providence, RI, 1971, Amer. Math. Soc., 17-18. | Zbl 0228.04001

[00029] [34] P. Erdős, A. Hajnal, A. Maté and R. Rado, Combinatorial Set Theory: Partition Relations for Cardinals, Stud. Logic Found. Math. 106, North-Holland, Amsterdam, 1984. | Zbl 0573.03019

[00030] [35] W. G. Fleissner and S. Shelah, Collectionwise Hausdorff: incompactness at singulars, Topology Appl. 31 (1989), 101-107. | Zbl 0659.54016

[00031] [36] M. Foreman and H. Woodin, The generalized continuum hypothesis can fail everywhere, Ann. Math. 133 (1991), 1-36. | Zbl 0718.03040

[00032] [38] D. Fremlin, Real-valued-measurable cardinals, in: Set Theory of the Reals, Israel Math. Conf. Proc. 6, Bar-Ilan Univ., Ramat Gan, 1993, 151-304.

[00033] [39] L. Fuchs, Infinite Abelian Groups, Vols. I, II, Academic Press, New York, 1970, 1973.

[00034] [40] S. Garcia-Ferreira and W. Just, Two examples of relatively pseudocompact spaces, Questions Answers Gen. Topology 17 (1999), 35-45. | Zbl 0943.54025

[00035] [41] M. Gitik, All uncountable cardinals can be singular, Israel J. Math. 35 (1980), 61-88. | Zbl 0439.03036

[00036] [47] M. Gitik and S. Shelah, Less saturated ideals, Proc. Amer. Math. Soc. 125 (1997), 1523-1530; math.LO/9503203. | Zbl 0864.03031

[00037] [48] M. Goldstern and S. Shelah. Many simple cardinal invariants, Arch. Math. Logic 32 (1993), 203-221; math.LO/9205208. | Zbl 0786.03030

[00038] [49] R. Graham, B. L. Rothschild and J. Spencer, Ramsey Theory, Wiley, New York, 1980.

[00039] [50] J. Gregory, Higher Souslin trees and the generalized continuum hypothesis, J. Symbolic Logic 41(3) (1976), 663-671. | Zbl 0347.02044

[00040] [51] R. Grossberg and S. Shelah, On the structure of Extp(G,𝐙), J. Algebra 121 (1989), 117-128. See also [52] below. | Zbl 0668.20044

[00041] [52] R. Grossberg and S. Shelah, On cardinalities in quotients of inverse limits of groups, Math. Japonica 47 (1998), 189-197. | Zbl 0911.20040

[00042] [53] A. Hajnal, True embedding partition relations, in: Finite and Infinite Combinatorics in Sets and Logic, Kluwer, 1993, 135-152.

[00043] [54] A. Hajnal and P. Hamburger, Halmazelmélet [Set Theory], Tankönyvkiaó Vállalat, Budapest, 1983 (in Hungarian).

[00044] [55] A. Hajnal, I. Juhász and Z. Szentmiklóssy, On the structure of CCC partial orders, Algebra Universalis, to appear. | Zbl 0938.06001

[00045] [56] J. D. Hamkins, Every group has a terminating transfinite automorphism tower, Proc. Amer. Math. Soc. 126 (1998), 3223-3226. | Zbl 0904.20027

[00046] [57] L. A. Harrington, M. D. Morley, A. Ščedrov and S. G. Simpson (eds.), Harvey Friedman's Research on the Foundations of Mathematics, Stud. Logic Found. Math. 117, North-Holland, 1985. | Zbl 0588.03001

[00047] [58] W. Hodges, For singular λ, λ-free implies free, Algebra Universalis 12 (1981), 205-220.

[00048] [59] J. Ihoda [H. Judah] and S. Shelah, Souslin forcing, J. Symbolic Logic 53 (1988), 1188-1207.

[00049] [60] T. Jech and S. Shelah, Possible pcf algebras, ibid. 61 (1996), 313-317; math.LO/9412208. | Zbl 0878.03036

[00050] [61] H. Judah and S. Shelah, MA(σ-centered): Cohen reals, strong measure zero sets and strongly meager sets, Israel J. Math. 68 (1989), 1-17. | Zbl 0693.03032

[00051] [62] H. Judah and S. Shelah, Baire Property and Axiom of Choice, Israel J. Math. 84 (1993), 435-450; math.LO/9211213. | Zbl 0797.03049

[00052] [64] I. Juhász, Cardinal functions, in: Recent Progress in General Topology (Prague, 1991), North-Holland, Amsterdam, 1992, 417-441.

[00053] [65] I. Juhász and S. Shelah, How large can a hereditarily separable or hereditarily Lindelöf space be?, Israel J. Math. 53 (1986), 355-364. | Zbl 0607.54002

[00054] [66] W. Just, A. R. D. Mathias, K. Prikry and P. Simon, On the existence of large p-ideals, J. Symbolic Logic 55 (1990), 457-465. | Zbl 0715.04002

[00055] [67] W. Just, S. Shelah and S. Thomas, The automorphism tower problem III: Closed groups of uncountable degree, Adv. Math., accepted.

[00056] [68] A. S. Kechris and S. Solecki, Approximation of analytic by Borel sets and definable countable chain conditions, Israel J. Math. 89 (1995), 343-356. | Zbl 0827.54023

[00057] [69] J. Ketonen, On the existence of P-points in the Stone-Čech compactification of integers, Fund. Math. 92 (1976), 91-94. | Zbl 0339.54035

[00058] [71] M. Kojman and S. Shelah, The universality spectrum of stable unsuperstable theories, Ann. Pure Appl. Logic 58 (1992), 57-72; math.LO/9201253. | Zbl 0769.03019

[00059] [72] P. Komjáth, On second-category sets, Proc. Amer. Math. Soc. 107 (1989), 653-654. | Zbl 0672.28002

[00060] [73] D. W. Kueker, Countable approximations and Löwenheim-Skolem theorems, Ann. Math. Logic 11 (1977), 57-103. | Zbl 0364.02009

[00061] [75] K. Kunen, Large homogeneous compact spaces, in: Open Problems in Topology, Elsevier, 1990, 261-270.

[00062] [76] R. Laver, On the consistency of Borel's conjecture, Acta Math. 137 (1976), 151-169. | Zbl 0357.28003

[00063] [77] M. Magidor and S. Shelah, Length of Boolean algebras and ultraproducts, Math. Japonica 48 (1998), 301-307; math.LO/9805145. | Zbl 0931.03061

[00064] [78] A. R. D. Mathias, 0 and the p-point problem, in: Higher Set Theory (Oberwolfach, 1977), Lecture Notes in Math. 669, Springer, Berlin, 1978, 375-383.

[00065] [79] A. H. Mekler, A. Rosłanowski and S. Shelah, On the p-rank of Ext, Israel J. Math. 112 (1999), 327-356; math.LO/9806165 | Zbl 0942.20037

[00066] [81] A. H. Mekler and S. Shelah, Almost free algebras, Israel J. Math. 89 (1995), 237-259; math.LO/9408213. | Zbl 0821.08008

[00067] [82] A. H. Mekler, S. Shelah and O. Spinas, The essentially free spectrum of a variety, Israel J. Math. 93 (1996), 1-8; math.LO/9411234. | Zbl 0845.08005

[00068] [83] A. W. Miller, Arnie Miller's problem list, in: Set Theory of the Reals, Israel Math. Conf. Proc. 6, Bar-Ilan Univ., Ramat Gan, 1993, 645-654. | Zbl 0828.03017

[00069] [84] D. Monk, Cardinal Invariants of Boolean Algebras, Progr. Math. 142, Birkhäuser, Basel, 1996. | Zbl 0849.03038

[00070] [85] J. Roitman, Adding a random or Cohen real: topological consequences and the effect on Martin's axiom, Fund. Math. 103 (1979), 47-60. | Zbl 0442.03034

[00071] [92] A. Rosłanowski and S. Shelah, Norms on possibilities I: forcing with trees and creatures, Mem. Amer. Math. Soc. 671 (1999); math.LO/9807172. | Zbl 0940.03059

[00072] [93] M. Rubin and S. Shelah, Combinatorial problems on trees: partitions, Δ-systems and large free subtrees, Ann. Pure Appl. Logic 33 (1987), 43-81. | Zbl 0654.04002

[00073] [94] G. Sageev and S. Shelah, Noetherian ring with free additive groups, Abstracts Amer. Math. Soc. 7 (1986), 369.

[00074] [96] J. D. Sharp and S. Thomas, Unbounded families and the cofinality of the infinite symmetric group, Arch. Math. Logic 34 (1995), 33-45. | Zbl 0818.03027

[00075] [107] S. Shelah, Few non-minimal types and non-structure, in: Proc. 11 Internat. Congress of Logic, Methodology and Philosophy of Science (Krokow, 1999), Kluwer, to appear; math.LO/9906023.

[00076] [112] S.Shelah, More constructions for Boolean algebras, Arch. Math. Logic,submitted; math.LO/9605235.

[00077] [122] S. Shelah, On what I do not understand (and have something to say), model theory, Math. Japonica, accepted; math.LO/9910158.

[00078] [143] S. Shelah, Classification theory for nonelementary classes, I. The number of uncountable models of ψLω1,ω. Part B, Israel J. Math. 46 (1983), 241-273.

[00079] [148] S. Shelah, More on proper forcing, ibid. 49 (1984), 1034-1038. | Zbl 0577.03026

[00080] [166] S. Shelah, Cardinal Arithmetic, Oxford Logic Guides 29, Oxford Univ. Press, 1994.

[00081] [168] S. Shelah, How special are Cohen and random forcings, i.e. Boolean algebras of the family of subsets of reals modulo meagre or null, Israel J. Math. 88 (1994), 159-174; math.LO/9303208.

[00082] [179] S. Shelah, Note on ω-nw-nep forcing notions, preprint.

[00083] [180] S. Shelah, J. Saxl and S. Thomas, Infinite products of finite simple groups, Trans. Amer. Math. Soc. 348 (1996), 4611-4641; math.IG/9605202. | Zbl 0867.20026

[00084] [181] S. Shelah and O. Spinas, On incomparability and related cardinal functions on ultraproducts of Boolean algebras, in preparation; math.LO/9903116. | Zbl 0971.03048

[00085] [183] S. Shelah and L. Stanley, A theorem and some consistency results in partition calculus, Ann. Pure Appl. Logic 36 (1987), 119-152. | Zbl 0625.03029

[00086] [184] S. Shelah and J. Steprāns, Somewhere trivial automorphisms, J. London Math. Soc. 49 (1994), 569-580; math.LO/9308214. | Zbl 0817.54005

[00087] [185] S. Shelah and J. Steprāns, Martin's axiom is consistent with the existence of nowhere trivial automorphisms, Proc. Amer. Math. Soc., submitted. | Zbl 0993.03064

[00088] [186] S. Shelah and S. Thomas, The cofinality spectrum of the infinite symmetric group, J. Symbolic Logic 62 (1997), 902-916; math.LO/9412230. | Zbl 0889.03037

[00089] [187] S. Shelah and J. Zapletal, Canonical models for 1 combinatorics, Ann. Pure Appl. Logic 98 (1999), 217-259; math.LO/9806166. | Zbl 0935.03055

[00090] [189] S. Solecki, Analytic ideals, Bull. Symbolic Logic 2 (1996), 339-348. | Zbl 0862.04002

[00091] [190] R. M. Solovay, Real valued measurable cardinals, in: Axiomatic Set Theory, Proc. Symposia Pure Math. 13, part 1, Providence, RI, Amer. Math. Soc. 1971, 397-428.

[00092] [191] S. G. Simpson (moderator), E-mail list for discussing foundations of mathematics, http://www.math.psu.edu/simpson/fom/.

[00093] [192] J. Steprāns and S. W. Watson, Homeomorphisms of manifolds with prescribed behaviour on large dense sets, Bull. London Math. Soc. 19 (1987), 305-310. | Zbl 0637.03051

[00094] [193] S. Thomas, The cofinalities of the infinite-dimensional classical groups, J. Algebra 179 (1996), 704-719. | Zbl 0846.20005

[00095] [194] S. Todorčević, Partition Problems in Topology, Contemp. Math. 84, Amer. Math. Soc., Providence, RI, 1989. | Zbl 0659.54001

[00096] [195] J. van Mill, An introduction to βω, in: Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 1984, 503-567.

[00097] [196] B. Veličković, Applications of the open coloring axiom, in: Set Theory of the Continuum (Berkeley, CA, 1989), Math. Sci. Res. Inst. Publ. 26, Springer, 1992, 137-154. | Zbl 0785.03032

[00098] [197] S. W. Williams, Box products, in: Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 1984, 169-200.

[00099] [198] H. Woodin, The Axiom of Determinacy, Forcing Axioms and the Nonstationary Ideal, de Gruyter Ser. Logic Appl. 1, de Gruyter, in press.