On a problem of Steve Kalikow
Shelah, Saharon
Fundamenta Mathematicae, Tome 163 (2000), p. 137-151 / Harvested from The Polish Digital Mathematics Library

The Kalikow problem for a pair (λ,κ) of cardinal numbers,λ > κ (in particular κ = 2) is whether we can map the family of ω-sequences from λ to the family of ω-sequences from κ in a very continuous manner. Namely, we demand that for η,ν ∈ ω we have: η, ν are almost equal if and only if their images are. We show consistency of the negative answer, e.g., for ω but we prove it for smaller cardinals. We indicate a close connection with the free subset property and its variants.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:212473
@article{bwmeta1.element.bwnjournal-article-fmv166i1p137bwm,
     author = {Saharon Shelah},
     title = {On a problem of Steve Kalikow},
     journal = {Fundamenta Mathematicae},
     volume = {163},
     year = {2000},
     pages = {137-151},
     zbl = {0959.03037},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv166i1p137bwm}
}
Shelah, Saharon. On a problem of Steve Kalikow. Fundamenta Mathematicae, Tome 163 (2000) pp. 137-151. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv166i1p137bwm/

[00000] [Ka90] S. Kalikow, Sequences of reals to sequences of zeros and ones, Proc. Amer. Math. Soc. 108 (1990), 833-837. | Zbl 0692.04007

[00001] [Ko84] P. Koepke, The consistency strength of the free-subset property for ωω, J. Symbolic Logic 49 (1984), 1198-1204. | Zbl 0592.03042

[00002] [Mi91] A. W. Miller, Arnie Miller's problem list, in: H. Judah (ed.), Set Theory of the Reals (Ramat Gan, 1991), Israel Math. Conf. Proc. 6, Bar-Ilan Univ., Ramat Gan, 1993, 645-654. | Zbl 0828.03017

[00003] [Sh 76] S. Shelah, Independence of strong partition relation for small cardinals, and the free-subset problem, J. Symbolic Logic 45 (1980), 505-509. | Zbl 0453.03052

[00004] [Sh 124] S. Shelah, ω may have a strong partition relation, Israel J. Math. 38 (1981), 283-288.

[00005] [Sh 110] S. Shelah, Better quasi-orders for uncountable cardinals, ibid. 42 (1982), 177-226. | Zbl 0499.03040

[00006] [Sh:b] S. Shelah, Proper Forcing, Lecture Notes in Math. 940, Springer, Berlin, 1982.

[00007] [Sh:g] S. Shelah, Cardinal Arithmetic, Oxford Logic Guides 29, Oxford Univ. Press, 1994.

[00008] [Sh 481] S. Shelah, Was Sierpiński right? III Can continuum-c.c. times c.c.c. be continuum-c.c.? Ann. Pure Appl. Logic 78 (1996), 259-269. | Zbl 0858.03049

[00009] [Sh:F254] S. Shelah, More on Kalikow Property of pairs of cardinals.

[00010] [Sh 513] S. Shelah, PCF and infinite free subsets, Arch. Math. Logic, to appear.

[00011] [Si70] J. Silver, A large cardinal in the constructible universe, Fund. Math. 69 (1970), 93-100. | Zbl 0208.01503