Covering of the null ideal may have countable cofinality
Shelah, Saharon
Fundamenta Mathematicae, Tome 163 (2000), p. 109-136 / Harvested from The Polish Digital Mathematics Library

We prove that it is consistent that the covering number of the ideal of measure zero sets has countable cofinality.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:212472
@article{bwmeta1.element.bwnjournal-article-fmv166i1p109bwm,
     author = {Saharon Shelah},
     title = {Covering of the null ideal may have countable cofinality},
     journal = {Fundamenta Mathematicae},
     volume = {163},
     year = {2000},
     pages = {109-136},
     zbl = {0962.03046},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv166i1p109bwm}
}
Shelah, Saharon. Covering of the null ideal may have countable cofinality. Fundamenta Mathematicae, Tome 163 (2000) pp. 109-136. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv166i1p109bwm/

[00000] [Ba88] T. Bartoszyński, On covering of real line by null sets, Pacific J. Math.,131 (1988), 1-12. | Zbl 0643.03034

[00001] [BaJu95] T. Bartoszyński and H. Judah, Set Theory: On the Structure of the Real Line, A K Peters, Wellesley, MS, 1995. | Zbl 0834.04001

[00002] [Fe94] D. Fremlin, Problem list, circulated notes, 1994.

[00003] [Ko] P. Komjáth, On second-category sets, Proc. Amer. Math. Soc. 107 (1989), 653-654. | Zbl 0672.28002

[00004] [Mi82] A. W. Miller, A characterization of the least cardinal for which the Baire category theorem fails, Proc. Amer. Math. Soc. 86 (1982), 498-502. | Zbl 0506.03012

[00005] [Sh 538] S. Shelah, Historic iteration with ε-support, Arch. Math. Logic, accepted.

[00006] [Sh 619] S. Shelah, The null ideal restricted to a non-null set may be saturated, preprint. | Zbl 1049.03038