We introduce the notions of Kuratowski-Ulam pairs of topological spaces and universally Kuratowski-Ulam space. A pair (X,Y) of topological spaces is called a Kuratowski-Ulam pair if the Kuratowski-Ulam Theorem holds in X× Y. A space Y is called a universally Kuratowski-Ulam (uK-U) space if (X,Y) is a Kuratowski-Ulam pair for every space X. Obviously, every meager in itself space is uK-U. Moreover, it is known that every space with a countable π-basis is uK-U. We prove the following: • every dyadic space (in fact, any continuous image of any product of separable metrizable spaces) is uK-U (so there are uK-U Baire spaces which do not have countable π-bases); • every Baire uK-U space is ccc.
@article{bwmeta1.element.bwnjournal-article-fmv165i3p239bwm, author = {David Fremlin and Tomasz Natkaniec and Ireneusz Rec\l aw}, title = {Universally Kuratowski--Ulam spaces}, journal = {Fundamenta Mathematicae}, volume = {163}, year = {2000}, pages = {239-247}, zbl = {0959.54010}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv165i3p239bwm} }
Fremlin, David; Natkaniec, Tomasz; Recław, Ireneusz. Universally Kuratowski–Ulam spaces. Fundamenta Mathematicae, Tome 163 (2000) pp. 239-247. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv165i3p239bwm/
[00000] [AL] R. Anantharaman and J. P. Lee, Planar sets whose complements do not contain a dense set of lines, Real Anal. Exchange 11 (1985-86), 168-179.
[00001] [RE] R. Engelking, General Topology, PWN, Warszawa, 1976.
[00002] [FG] D. H. Fremlin and S. Grekas, Products of completion regular measures, Fund. Math. 147 (1995), 27-37. | Zbl 0843.28005
[00003] [DF] D. H. Fremlin, Universally Kuratowski-Ulam spaces, preprint.
[00004] [HMC] R. C. Haworth and R. C. McCoy, Baire spaces, Dissertationes Math. 141 (1977).
[00005] [AK] A. S. Kechris, Classical Descriptive Set Theory, Springer, Berlin, 1995.
[00006] [KK] K. Kuratowski, Topologie I, PWN, Warszawa, 1958.
[00007] [ŁR] G. Łabędzki and M. Repický, Hechler reals, J. Symbolic Logic 60 (1995), 444-458. | Zbl 0832.03025
[00008] [JO] J. Oxtoby, Measure and Category, Springer, 1980.
[00009] [IR] I. Recław, Fubini properties for σ-centered σ-ideals, Topology Appl., to appear.
[00010] [FT] F. D. Tall, The density topology, Pacific Math. J. 62 (1976), 275-284.
[00011] [HS] H. Steinhaus, Sur les distances des points des ensembles de mesure positive, Fund. Math. 1 (1920), 99-104. | Zbl 47.0179.02