We address the problem of the multifractal analysis of local entropies for arbitrary invariant measures. We obtain an upper estimate on the multifractal spectrum of local entropies, which is similar to the estimate for local dimensions. We show that in the case of Gibbs measures the above estimate becomes an exact equality. In this case the multifractal spectrum of local entropies is a smooth concave function. We discuss possible singularities in the multifractal spectrum and their relation to phase transitions.
@article{bwmeta1.element.bwnjournal-article-fmv165i3p203bwm, author = {Floris Takens and Evgeny Verbitski}, title = {General multifractal analysis of local entropies}, journal = {Fundamenta Mathematicae}, volume = {163}, year = {2000}, pages = {203-237}, zbl = {0964.37012}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv165i3p203bwm} }
Takens, Floris; Verbitski, Evgeny. General multifractal analysis of local entropies. Fundamenta Mathematicae, Tome 163 (2000) pp. 203-237. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv165i3p203bwm/
[00000] [1] L. Barreira, Ya. Pesin, and J. Schmeling, Multifractal spectra and multifractal rigidity for horseshoes, J. Dynam. Control Systems 3 (1997), 33-49. | Zbl 0949.37017
[00001] [2] L. Barreira, Ya. Pesin, and J. Schmeling, On a general concept of multifractality: multifractal spectra for dimensions, entropies, andLyapunov exponents. Multifractal rigidity, Chaos 7 (1997), 27-38. | Zbl 0933.37002
[00002] [3] C. Beck and F. Schlögl, Thermodynamics of Chaotic Systems, Cambridge Univ. Press, Cambridge, 1993.
[00003] [4] R. Bowen, Some systems with unique equilibrium states, Math. Systems Theory 8 (1974/75), 193-202. | Zbl 0299.54031
[00004] [5] M. Brin and A. Katok, On local entropy, in: Geometric Dynamics (Rio de Janeiro, 1981), Lecture Notes in Math. 1007, Springer, Berlin, 1983, 30-38.
[00005] [6] K. Falconer, Fractal Geometry, Wiley, Chichester, 1990.
[00006] [7] P. Grassberger and I. Procaccia, Dimensions and entropies of strange attractors from a fluctuating dynamics approach, Phys. D 13 (1984), 34-54.
[00007] [8] M. Guysinsky and S. Yaskolko, Coincidence of various dimensions associated with metrics and measures on metric spaces, Discrete Contin. Dynam. Systems 3 (1997), 591-603. | Zbl 0948.37014
[00008] [9] T. C. Halsey, M. H. Jensen, L. P. Kadanoff, I. Procaccia, and B. I. Shraiman, Fractal measures and their singularities: the characterization of strange sets, Phys. Rev. A (3), 33 (1986), 1141-1151. | Zbl 1184.37028
[00009] [10] N. T. A. Haydn and D. Ruelle, Equivalence ofGibbs and equilibrium states for homeomorphisms satisfying expansiveness and specification, Comm. Math. Phys. 148 (1992), 155-167. | Zbl 0763.54028
[00010] [11] H. Hu, Decay of correlations for piecewise smooth maps with indifferent fixed points, preprint, 1998.
[00011] [12] S. Isola, Dynamical zeta functions and correlation functions for non-uniformly hyperbolic transformations, preprint, 1995.
[00012] [13] A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Encyclopedia Math. Appl. 54, Cambridge Univ. Press, Cambridge, 1995. | Zbl 0878.58020
[00013] [14] C. Liverani, B. Saussol, and S. Vaienti, A probabilistic approach to intermittency, preprint.
[00014] [15] L. Olsen, A multifractal formalism, Adv. Math. 116 (1995), 82-196. | Zbl 0841.28012
[00015] [16] Ya. B. Pesin, Dimension Theory in Dynamical Systems, Univ. of Chicago Press, Chicago, IL, 1997.
[00016] [17] Ya. B. Pesin and B. S. Pitskel', Topological pressure and the variational principle for noncompact sets, Funktsional. Anal. i Prilozhen. 18 (1984), no. 4, 50-63 (in Russian).
[00017] [18] G. Pianigiani, First return map and invariant measures, Israel J. Math. 35 (1980), 32-48. | Zbl 0445.28016
[00018] [19] T. Prellberg and J. Slawny, Maps of intervals with indifferent fixed points: thermodynamic formalism and phase transitions, J. Statist. Phys. 66 (1992), 503-514. | Zbl 0892.58024
[00019] [20] A. W. Roberts and D. E. Varberg, Convex Functions, Academic Press, New York, 1973. | Zbl 0271.26009
[00020] [21] J. Schmeling, On the completeness of multifractal spectra, preprint WIAS, Berlin, 1996.
[00021] [22] F. Takens and E. Verbitski, Multifractal analysis of local entropies for expansive homeomorphisms with specification, Comm. Math. Phys. 203 (1999), 593-612. | Zbl 0955.37002
[00022] [23] M. Urbański, ParabolicCantor sets, Fund. Math. 151 (1996), 241-277.
[00023] [24] T. Ward, Entropy of Compact Group Automorphisms, lecture notes, 1994.
[00024] [25] L.-S. Young, Recurrence times and rates of mixing, preprint, 1997.
[00025] [26] M. Yuri, Thermodynamic formalism for certain nonhyperbolic maps, preprint. | Zbl 0971.37004