Let f be a Borel measurable mapping of a Luzin (i.e. absolute Borel metric) space L onto a metric space M such that f(F) is a Borel subset of M if F is closed in L. We show that then is a set for all except countably many y ∈ M, that M is also Luzin, and that the Borel classes of the sets f(F), F closed in L, are bounded by a fixed countable ordinal. This gives a converse of the classical theorem of Arsenin and Kunugui. As a particular case we get Taĭmanov’s theorem saying that the image of a Luzin space under a closed continuous mapping is a Luzin space. The method is based on a parametrized version of a Hurewicz type theorem and on the use of the Jankov-von Neumann selection theorem.
@article{bwmeta1.element.bwnjournal-article-fmv165i3p191bwm, author = {P. Holick\'y and Miroslav Zelen\'y}, title = {A converse of the Arsenin--Kunugui theorem on Borel sets with $\sigma$-compact sections}, journal = {Fundamenta Mathematicae}, volume = {163}, year = {2000}, pages = {191-202}, zbl = {0959.54023}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv165i3p191bwm} }
Holický, P.; Zelený, Miroslav. A converse of the Arsenin–Kunugui theorem on Borel sets with σ-compact sections. Fundamenta Mathematicae, Tome 163 (2000) pp. 191-202. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv165i3p191bwm/
[00000] [1] C. Dellacherie, Un cours sur les ensembles analytiques, in: Analytic Sets, Academic Press, London, 1980, 183-316.
[00001] [2] A. S. Kechris, Classical Descriptive Set Theory, Springer, New York, 1995.
[00002] [3] K. Kuratowski, Topology, Vol. I, Academic Press, New York, 1966.
[00003] [4] A. Louveau and J. Saint-Raymond, Borel classes and closed games, Trans. Amer. Math. Soc. 304 (1987), 431-467. | Zbl 0655.04001
[00004] [5] R. D. Mauldin, Bimeasurable functions, Proc. Amer. Math. Soc. 83 (1981), 369-370. | Zbl 0483.54026
[00005] [6] R. Pol, Some remarks about measurable parametrizations, ibid. 93 (1985), 628-632. | Zbl 0609.28006
[00006] [7] R. Purves, Bimeasurable functions, Fund. Math. 58 (1966), 149-158. | Zbl 0143.07101
[00007] [8] J. Saint-Raymond, Boréliens à coupes , Bull. Soc. Math. France 104 (1976), 389-400.
[00008] [9] S. M. Srivastava, A Course on Borel Sets, Springer, New York, 1998. | Zbl 0903.28001
[00009] [10] A. D. Taĭmanov, On closed mappings I, Mat. Sb. 36 (1955), 349-352 (in Russian).