Trajectory of the turning point is dense for a co-σ-porous set of tent maps
Brucks, Karen ; Buczolich, Zoltán
Fundamenta Mathematicae, Tome 163 (2000), p. 95-123 / Harvested from The Polish Digital Mathematics Library

It is known that for almost every (with respect to Lebesgue measure) a ∈ [√2,2] the forward trajectory of the turning point of the tent map Ta with slope a is dense in the interval of transitivity of Ta. We prove that the complement of this set of parameters of full measure is σ-porous.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:212465
@article{bwmeta1.element.bwnjournal-article-fmv165i2p95bwm,
     author = {Karen Brucks and Zolt\'an Buczolich},
     title = {Trajectory of the turning point is dense for a co-$\sigma$-porous set of tent maps},
     journal = {Fundamenta Mathematicae},
     volume = {163},
     year = {2000},
     pages = {95-123},
     zbl = {0966.37012},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv165i2p95bwm}
}
Brucks, Karen; Buczolich, Zoltán. Trajectory of the turning point is dense for a co-σ-porous set of tent maps. Fundamenta Mathematicae, Tome 163 (2000) pp. 95-123. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv165i2p95bwm/

[00000] [1] L. Block and W. A. Coppel, Dynamics in One Dimension, Lecture Notes in Math. 1513, Springer, New York, 1992.

[00001] [2] K. Brucks, B. Diamond, M. V. Otero-Espinar and C. Tresser, Dense orbits of critical points for the tent map, in: Contemp. Math. 117, Amer. Math. Soc., 1991, 57-61. | Zbl 0746.34029

[00002] [3] K. Brucks and M. Misiurewicz, The trajectory of the turning point is dense for almost all tent maps, Ergodic Theory Dynam. Systems 16 (1996), 1173-1183. | Zbl 0874.58014

[00003] [4] H. Bruin, Invariant measures of interval maps, Ph.D. thesis, Delft, 1994.

[00004] [5] H. Bruin, Combinatorics of the kneading map, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 5 (1995), 1339-1349. | Zbl 0886.58023

[00005] [6] H. Bruin, Quasi-symmetry of conjugacies between interval maps, Nonlinearity 9 (1996), 1191-1207. | Zbl 0895.58018

[00006] [7] H. Bruin, Topological conditions for the existence of absorbing Cantor sets, Trans. Amer. Math. Soc. 350 (1998), 2229-2263. | Zbl 0901.58029

[00007] [8] H. Bruin, For almost every tent map, the turning point is typical, Fund. Math. 155 (1998), 215-235. | Zbl 0962.37015

[00008] [9] F. Hofbauer, The topological entropy of the transformation x ↦ ax(1-x), Monatsh. Math. 90 (1980), 117-141. | Zbl 0433.54009

[00009] [10] F. Hofbauer and G. Keller, Quadratic maps without asymptotic measure, Comm. Math. Phys. 127 (1990), 319-337. | Zbl 0702.58034

[00010] [11] W. de Melo and S. van Strien, One-Dimensional Dynamics, Springer, New York, 1993. | Zbl 0791.58003

[00011] [12] D. Preiss and L. Zajíček, Fréchet differentiation of convex functions in a Banach space with a separable dual, Proc. Amer. Math. Soc. 91 (1984), 202-204. | Zbl 0521.46034

[00012] [13] D. L. Renfro, On some various porosity notions, preprint, 1995.

[00013] [14] D. Sands, Topological conditions for positive Lyapunov exponent in unimodal maps, Ph.D. thesis, Cambridge, 1994.

[00014] [15] S. van Strien, Smooth dynamics on the interval, in: New Directions in Dynamical Systems, London Math. Soc. Lecture Note Ser. 127, Cambridge Univ. Press, Cambridge, 1988, 57-119.

[00015] [16] B. S. Thomson, Real Functions, Lecture Notes in Math. 1170, Springer, New York, 1985. | Zbl 0581.26001

[00016] [17] L. Zajíček, Porosity and σ-porosity, Real Anal. Exchange 13 (1987-88), 314-347.