It is known that for almost every (with respect to Lebesgue measure) a ∈ [√2,2] the forward trajectory of the turning point of the tent map with slope a is dense in the interval of transitivity of . We prove that the complement of this set of parameters of full measure is σ-porous.
@article{bwmeta1.element.bwnjournal-article-fmv165i2p95bwm, author = {Karen Brucks and Zolt\'an Buczolich}, title = {Trajectory of the turning point is dense for a co-$\sigma$-porous set of tent maps}, journal = {Fundamenta Mathematicae}, volume = {163}, year = {2000}, pages = {95-123}, zbl = {0966.37012}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv165i2p95bwm} }
Brucks, Karen; Buczolich, Zoltán. Trajectory of the turning point is dense for a co-σ-porous set of tent maps. Fundamenta Mathematicae, Tome 163 (2000) pp. 95-123. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv165i2p95bwm/
[00000] [1] L. Block and W. A. Coppel, Dynamics in One Dimension, Lecture Notes in Math. 1513, Springer, New York, 1992.
[00001] [2] K. Brucks, B. Diamond, M. V. Otero-Espinar and C. Tresser, Dense orbits of critical points for the tent map, in: Contemp. Math. 117, Amer. Math. Soc., 1991, 57-61. | Zbl 0746.34029
[00002] [3] K. Brucks and M. Misiurewicz, The trajectory of the turning point is dense for almost all tent maps, Ergodic Theory Dynam. Systems 16 (1996), 1173-1183. | Zbl 0874.58014
[00003] [4] H. Bruin, Invariant measures of interval maps, Ph.D. thesis, Delft, 1994.
[00004] [5] H. Bruin, Combinatorics of the kneading map, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 5 (1995), 1339-1349. | Zbl 0886.58023
[00005] [6] H. Bruin, Quasi-symmetry of conjugacies between interval maps, Nonlinearity 9 (1996), 1191-1207. | Zbl 0895.58018
[00006] [7] H. Bruin, Topological conditions for the existence of absorbing Cantor sets, Trans. Amer. Math. Soc. 350 (1998), 2229-2263. | Zbl 0901.58029
[00007] [8] H. Bruin, For almost every tent map, the turning point is typical, Fund. Math. 155 (1998), 215-235. | Zbl 0962.37015
[00008] [9] F. Hofbauer, The topological entropy of the transformation x ↦ ax(1-x), Monatsh. Math. 90 (1980), 117-141. | Zbl 0433.54009
[00009] [10] F. Hofbauer and G. Keller, Quadratic maps without asymptotic measure, Comm. Math. Phys. 127 (1990), 319-337. | Zbl 0702.58034
[00010] [11] W. de Melo and S. van Strien, One-Dimensional Dynamics, Springer, New York, 1993. | Zbl 0791.58003
[00011] [12] D. Preiss and L. Zajíček, Fréchet differentiation of convex functions in a Banach space with a separable dual, Proc. Amer. Math. Soc. 91 (1984), 202-204. | Zbl 0521.46034
[00012] [13] D. L. Renfro, On some various porosity notions, preprint, 1995.
[00013] [14] D. Sands, Topological conditions for positive Lyapunov exponent in unimodal maps, Ph.D. thesis, Cambridge, 1994.
[00014] [15] S. van Strien, Smooth dynamics on the interval, in: New Directions in Dynamical Systems, London Math. Soc. Lecture Note Ser. 127, Cambridge Univ. Press, Cambridge, 1988, 57-119.
[00015] [16] B. S. Thomson, Real Functions, Lecture Notes in Math. 1170, Springer, New York, 1985. | Zbl 0581.26001
[00016] [17] L. Zajíček, Porosity and σ-porosity, Real Anal. Exchange 13 (1987-88), 314-347.