Let (I,T) be the inverse limit space of a post-critically finite tent map. Conditions are given under which these inverse limit spaces are pairwise nonhomeomorphic. This extends results of Barge & Diamond [2].
@article{bwmeta1.element.bwnjournal-article-fmv165i2p125bwm, author = {Henk Bruin}, title = {Inverse limit spaces of post-critically finite tent maps}, journal = {Fundamenta Mathematicae}, volume = {163}, year = {2000}, pages = {125-138}, zbl = {0973.37011}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv165i2p125bwm} }
Bruin, Henk. Inverse limit spaces of post-critically finite tent maps. Fundamenta Mathematicae, Tome 163 (2000) pp. 125-138. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv165i2p125bwm/
[00000] [1] C. Bandt, Composants of the horseshoe, Fund. Math.144 (1994), 231-241. | Zbl 0818.54028
[00001] [2] M. Barge and B. Diamond, Homeomorphisms of inverse limit spaces of one-dimensional maps, ibid.146 (1995), 171-187.
[00002] [3] M. Barge and S. Holte, Nearly one-dimensional Hénon attractors and inverse limits, Nonlinearity8 (1995), 29-42.
[00003] [4] M. Barge and W. Ingram, Inverse limits on [0,1] using logistic bonding maps, Topology Appl.72 (1996), 159-172. | Zbl 0859.54030
[00004] [5] M. Barge and J. Martin, Endpoints of inverse limit spaces and dynamics, in: Continua with the Houston Problem Book, Lecture Notes in Pure and Appl. Math. 170, Marcel Dekker, New York, 1995, 165-182. | Zbl 0826.58023
[00005] [6] K. Brucks and B. Diamond, A symbolic representation of inverse limit spaces for a class of unimodal maps, ibid., 207-226. | Zbl 0828.58011
[00006] [7] H. Bruin, Planar embeddings of inverse limit spaces of unimodal maps, Topology Applications96 (1999), 191-208. | Zbl 0954.54019
[00007] [8] A. Douady et J. Hubbard, Étude dynamique des polynômes complexes, partie I, Publ. Math. Orsay 85-04, 1984. | Zbl 0552.30018
[00008] [9] F. Durand, A generalization of Cobham's Theorem, Theory Comput. Syst.31 (1998), 169-185. | Zbl 0895.68081
[00009] [10] R. J. Fokkink, The structure of trajectories, Ph.D. thesis, Delft, 1992.
[00010] [11] L. Kailhofer, A partial classification of inverse limit spaces of tent maps with periodic critical points, Ph.D. thesis, Milwaukee, 1999. | Zbl 1032.54021
[00011] [12] B. Mossé, Puissances de mots et reconnaissabilité des points fixes d'une substitution, Theoret. Comput. Sci.99 (1992), 327-334. | Zbl 0763.68049
[00012] [13] S. Nadler, Continuum Theory, Marcel Dekker, New York, 1992.
[00013] [14] M. Queffélec, Substitution Dynamical Systems. Spectral Analysis, Lecture Notes in Math.1294, Springer, 1987.
[00014] [15] R. Swanson and H. Volkmer, Invariants of weak equivalence in primitive matrices, Ergodic Theory Dynam. Systems 20 (2000), 611-616. | Zbl 0984.37019
[00015] [16] W. Watkins, Homeomorphic classification of certain inverse limit spaces with open bonding maps, Pacific J. Math.103 (1982), 589-601. | Zbl 0451.54027