I discuss the properties of α-favourable and weakly α-favourable measure spaces, with remarks on their relations with other classes.
@article{bwmeta1.element.bwnjournal-article-fmv165i1p67bwm, author = {David Fremlin}, title = {Weakly $\alpha$-favourable measure spaces}, journal = {Fundamenta Mathematicae}, volume = {163}, year = {2000}, pages = {67-94}, zbl = {1010.28012}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv165i1p67bwm} }
Fremlin, David. Weakly α-favourable measure spaces. Fundamenta Mathematicae, Tome 163 (2000) pp. 67-94. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv165i1p67bwm/
[00000] [1] A. Bellow and D. Kölzow (eds.), Measure Theory (Oberwolfach, 1975), Lecture Notes in Math. 541, Springer, 1976.
[00001] [2] J. R. Choksi and D. H. Fremlin, Completion regular measures on product spaces, Math. Ann. 241 (1979), 113-128. | Zbl 0387.60006
[00002] [3] G. Choquet, Lectures in Analysis, Vol. I, Benjamin, 1969.
[00003] [4] G. Debs, Stratégies gagnantes dans certains jeux topologiques, Fund. Math. 126 (1985), 93-105. | Zbl 0587.54033
[00004] [5] M. Dekiert, Two results for monocompact measures, Manuscripta Math. 80 (1993), 339-346. | Zbl 0803.28003
[00005] [6] P. Erdős, A. Hajnal, A. Máté and R. Rado, tCombinatorial Set Theory: Partition Relations for Cardinals, Akadémiai Kiadó, 1984. | Zbl 0573.03019
[00006] [7] D. H. Fremlin, Consequences of Martin's Axiom, Cambridge Univ. Press, 1984. | Zbl 0551.03033
[00007] [8] D. H. Fremlin, Measure-additive coverings and measurable selectors, Dissertationes Math. 260 (1987). | Zbl 0703.28003
[00008] [9] D. H. Fremlin, Measure algebras, pp. 876-980 in [15].
[00009] [10] D. H. Fremlin, Measure Theory, in preparation. Drafts available by anonymous ftp from ftp.essex.ac.uk/pub/measuretheory.
[00010] [11] F. Galvin and R. Telgársky, Stationary strategies in topological games, Topology Appl. 22 (1986), 51-69. | Zbl 0581.90108
[00011] [12] T. Jech, Set Theory, Academic Press, 1978.
[00012] [13] S. Koppelberg, General Theory of Boolean Algebras, Vol. 1 of [15]. | Zbl 0486.03029
[00013] [14] E. Marczewski, On compact measures, Fund. Math. 40 (1953), 113-124. | Zbl 0052.04902
[00014] [15] J. D. Monk (ed.), Handbook of Boolean Algebras, North-Holland, 1989.
[00015] [16] K. Musiał, Inheritness of compactness and perfectness of measures by thick subsets, pp. 31-42 in [1]. | Zbl 0341.28003
[00016] [17] J. K. Pachl, Two classes of measures, Colloq. Math. 42 (1979), 331-340. | Zbl 0428.28002
[00017] [18] D. Ross, Compact measures have Loeb preimages, Proc. Amer. Math. Soc. 115 (1992), 365-370. | Zbl 0755.28009
[00018] [19] C. Ryll-Nardzewski, On quasi-compact measures, Fund. Math. 40 (1953), 125-130.
[00019] [20] V. V. Sazonov, On perfect measures, Amer. Math. Soc. Transl. (2) 48 (1966), 229-254.
[00020] [21] S. Shelah, Strong negative partition above the continuum, J. Symbolic Logic 55 (1990), 21-31. | Zbl 0708.03026
[00021] [22] S. Shelah, Strong negative partition relations below the continuum, Acta Math. Hungar. 58 (1991), 95-100. | Zbl 0773.03035
[00022] [23] S. Todorčević, Partitioning pairs of countable ordinals, Acta Math. 159 (1987), 261-294. | Zbl 0658.03028
[00023] [24] F. Topsøe, Approximating pavings and construction of measures, Colloq. Math. 42 (1979), 377-385. | Zbl 0448.28001