We explore the possibility of forcing nonreflecting stationary sets of . We also present a generalization of Kanamori’s weakly normal filters, which induces stationary reflection.
@article{bwmeta1.element.bwnjournal-article-fmv165i1p55bwm, author = {Yoshihiro Abe}, title = {Nonreflecting stationary subsets of $P\_$\kappa$$\lambda$$ }, journal = {Fundamenta Mathematicae}, volume = {163}, year = {2000}, pages = {55-66}, zbl = {0969.03058}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv165i1p55bwm} }
Abe, Yoshihiro. Nonreflecting stationary subsets of $P_κλ$ . Fundamenta Mathematicae, Tome 163 (2000) pp. 55-66. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv165i1p55bwm/
[00000] [1] Y. Abe, Strongly normal ideals on and the Sup-function, Topology Appl. 74 (1996), 97-107.
[00001] [2] Y. Abe, Combinatorial characterization of -indescribability in , Arch. Math. Logic 37 (1998), 261-272.
[00002] [3] A. Apter and S. Shelah, Menas' result is best possible, Trans. Amer. Math. Soc. 349 (1997), 2007-2034. | Zbl 0876.03030
[00003] [4] D. M.Carr, A note on the λ-Shelah property, Fund. Math. 128 (1987), 197-198. | Zbl 0647.03041
[00004] [5] D. M.Carr, J. P. Levinski and D. H. Pelletier, On the existence of strongly normal ideals on , Arch. Math. Logic 30 (1990), 59-72. | Zbl 0711.03019
[00005] [6] M. Gitik, Nonsplitting stationary subsets of , J. Symbolic Logic 50 (1985), 881-894. | Zbl 0601.03021
[00006] [7] T. Jech, Some combinatorial problems concerning uncountable cardinals, Ann. Math. Logic 5 (1973), 165-198. | Zbl 0262.02062
[00007] [8] C. A.Johnson, Some partition relations for ideals on , Acta Math. Hungar. 56 (1990), 269-282. | Zbl 0733.03039
[00008] [9] A. Kanamori, Weakly normal filters and irregular ultrafilters, Trans. Amer. Math. Soc. 220 (1976), 393-399. | Zbl 0341.02058
[00009] [10] P. Koszmider, Semimorasses and nonreflection at singular cardinals, Ann. Pure Appl. Logic 72 (1995), 1-23. | Zbl 0843.03025
[00010] [11] P. Matet, Concerning stationary subsets of , in: Set Theory and its Applications, Lecture Notes in Math. 1401, Springer, 1989, 119-127.