Irreducibility of inverse limits on intervals
Ryden, David
Fundamenta Mathematicae, Tome 163 (2000), p. 29-53 / Harvested from The Polish Digital Mathematics Library

A procedure for obtaining points of irreducibility for an inverse limit on intervals is developed. In connection with this, the following are included. A semiatriodic continuum is defined to be a continuum that contains no triod with interior. Characterizations of semiatriodic and unicoherent continua are given, as well as necessary and sufficient conditions for a subcontinuum of a semiatriodic and unicoherent continuum M to lie within the interior of a proper subcontinuum of M.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:212459
@article{bwmeta1.element.bwnjournal-article-fmv165i1p29bwm,
     author = {David Ryden},
     title = {Irreducibility of inverse limits on intervals},
     journal = {Fundamenta Mathematicae},
     volume = {163},
     year = {2000},
     pages = {29-53},
     zbl = {0960.54022},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv165i1p29bwm}
}
Ryden, David. Irreducibility of inverse limits on intervals. Fundamenta Mathematicae, Tome 163 (2000) pp. 29-53. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv165i1p29bwm/

[00000] [1]D. E. Bennett and J. B. Fugate, Continua and their non-separating subcontinua, Dissertationes Math. 149 (1977). | Zbl 0354.54017

[00001] [2]R. H. Bing, Snake-like continua, Duke Math. J. 18 (1951), 653-663. | Zbl 0043.16804

[00002] [3]W. D. Collins, A property of atriodic continua, Illinois J. Math. 28 (1984), 480-486. | Zbl 0524.54026

[00003] [4]J. R. Isbell, Embeddings in inverse limits, Ann. of Math. 70 (1959), 73-84. | Zbl 0094.35405

[00004] [5]D. P. Kuykendall, Irreducibility in inverse limits of intervals, Master's Thesis, Univ. of Houston, 1969.

[00005] [6]D. P. Kuykendall, Irreducibility and indecomposability in inverse limits, Fund. Math. 80 (1973), 265-270. | Zbl 0285.54026

[00006] [7]M. A. Owens, Extremal continua: a class of non-separating subcontinua, Topology Appl. 23 (1986), 263-270. | Zbl 0598.54016

[00007] [8]R. H. Sorgenfrey, Concerning triodic continua, Amer. J. Math. 66 (1944), 439-460. | Zbl 0060.40208