For and a link map let , define a map by and a (generalized) Massey-Rolfsen invariant to be the homotopy class of . We prove that for a polyhedron K of dimension ≤ m - 2 under certain (weakened metastable) dimension restrictions, α is an onto or a 1 - 1 map from the set of link maps up to link concordance to . If are closed highly homologically connected manifolds of dimension (in particular, homology spheres), then .
@article{bwmeta1.element.bwnjournal-article-fmv165i1p1bwm, author = {A. Skopenkov}, title = {On the generalized Massey--Rolfsen invariant for link maps}, journal = {Fundamenta Mathematicae}, volume = {163}, year = {2000}, pages = {1-15}, zbl = {0966.57028}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv165i1p1bwm} }
Skopenkov, A. On the generalized Massey–Rolfsen invariant for link maps. Fundamenta Mathematicae, Tome 163 (2000) pp. 1-15. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv165i1p1bwm/
[00000] [Ca 86] A. Casson, Three lectures on new infinite constructions in 4-dimensional manifolds, in: A la Recherche de la Topologie Perdue, L. Guillou and A. Marin (eds.), Progr. Math. 62, Birkhäuser, Boston, 1986, 201-244.
[00001] [DRS 91] A. N. Dranishnikov, D. Repovš and E. V. Shchepin, On intersections of compacta of complementary dimensions in Euclidean space, Topology Appl. 38 (1991), 237-253. | Zbl 0719.54015
[00002] [HK 98] N. Habegger and U. Kaiser, Link homotopy in 2-metastable range, Topology 37 (1998), 75-94. | Zbl 0890.57036
[00003] [Ha 69] L. S. Harris, Intersections and embeddings of polyhedra, ibid. 8 (1969), 1-26.
[00004] [Ja 54] I. James, On the iterated suspension, Quart. J. Math. Oxford 5 (1954), 1-10.
[00005] [Ke 59] M. Kervaire, An interpretation of G. Whitehead's generalization of H. Hopf's invariant, Ann. of Math. 62 (1959), 345-362. | Zbl 0088.39205
[00006] [Ki 90] P. Kirk, Link homotopy with one codimension-two component, Trans. Amer. Math. Soc. 319 (1990), 663-688. | Zbl 0705.57014
[00007] [Ko 88] U. Koschorke, Link maps and the geometry of their invariants, Manuscripta Math. 61 (1988), 383-415. | Zbl 0689.57016
[00008] [Ko 90] U. Koschorke, On link maps and their homotopy classification, Math. Ann. 286 (1990), 753-782. | Zbl 0662.57013
[00009] [Ko 92] U. Koschorke, Homotopy, concordance and bordism of link maps, preprint, Univ. of Siegen, 1992.
[00010] [Ma 90] W. Massey, Homotopy classification of 3-component links of codimension greater than 2, Topology Appl. 34 (1990), 269-300. | Zbl 0717.57009
[00011] [MR 86] W. Massey and D. Rolfsen, Homotopy classification of higher dimensional links, Indiana Univ. Math. J. 34 (1986), 375-391. | Zbl 0575.57011
[00012] [Me] S. Melikhov, Singular link concordance implies link homotopy in codimension ≥ 3, submitted.
[00013] [Mi 54] J. Milnor, Link groups, Ann. of Math. 59 (1954), 177-195. | Zbl 0055.16901
[00014] [MT 68] R. E. Mosher and M. C. Tangora, Cohomology Operations and Applications in Homotopy Theory, Harper and Row, New York, 1968. | Zbl 0153.53302
[00015] [Ne 98] V. M. Nezhinskiĭ, An analogue of the Milnor group of a link in the theory of multidimensional links, Zap. Nauchn. Sem. POMI 252 (1998), 175-190 (in Russian).
[00016] [RS 96] D. Repovš and A. Skopenkov, Embeddability and isotopy of polyhedra in Euclidean spaces, Proc. Steklov Inst. Math. 212 (1996), 163-178.
[00017] [RS 98] D. Repovš and A. Skopenkov, A deleted product criterion for approximability of maps by embeddings, Topology Appl. 87 (1998), 1-19.
[00018] [RS 99] D. Repovš and A. Skopenkov, New results on embeddings of polyhedra and manifolds into Euclidean spaces, Uspekhi Mat. Nauk 54 (1999), no. 6, 61-109 (in Russian); English transl.: Russian Math. Surveys, to appear.
[00019] [RS] D. Repovš and A. Skopenkov, On projected embeddings and desuspension of the α-invariant, submitted.
[00020] [RS 72] C. P. Rourke and B. J. Sanderson, Introduction to Piecewise-Linear Topology, Ergeb. Math. Grenzgeb. 69, Springer, Berlin, 1972. | Zbl 0254.57010
[00021] [Sa 99] R. F. Sayakhova, Homotopy classification of singular links of type (1,...,1, m;3) with m > 1, Zap. Nauchn. Sem. POMI 261 (1999), 229-239 (in Russian). | Zbl 1008.57019
[00022] [Sc 68] G. P. Scott, Homotopy links, Abh. Math. Sem. Univ. Hamburg 32 (1968), 186-190. | Zbl 0165.57102
[00023] [SS 90] J. Segal and S. Spież, On transversely trivial maps, Questions Answers Gen. Topology 8 (1990), 91-100. | Zbl 0715.54031
[00024] [SS 92] J. Segal and S. Spież, Quasi-embeddings and embedding of polyhedra in , Topology Appl. 45 (1992), 275-282.
[00025] [SSS 98] J. Segal, A. Skopenkov and S. Spież, Embedding of polyhedra in and the deleted product obstruction, Topology Appl. 85 (1998), 335-344. | Zbl 0934.57025
[00026] [Se 53] J. P. Serre, Groupes d'homotopie et classes de groupes abéliens, Ann. of Math. 58 (1953), 258-294. | Zbl 0052.19303
[00027] [Sk 97] A. Skopenkov, On the deleted product criterion for embeddability of manifolds in , Comment. Math. Helv. 72 (1997), 543-555. | Zbl 0905.57015
[00028] [Sk 98] A. Skopenkov, On the deleted product criterion for embeddability in , Proc. Amer. Math. Soc. 126 (1998), 2267-2276.
[00029] [Sk] A. Skopenkov, On the Wu-Haefliger-Hirsch invariants of embeddings and immersions, submitted. | Zbl 1012.57035
[00030] [ST 91] S. Spież and H. Toruńczyk, Moving compacta in apart, Topology Appl. 41 (1991), 193-204. | Zbl 0770.54034
[00031] [We 67] C. Weber, Plongements de polyèdres dans le domaine metastable, Comment. Math. Helv. 42 (1967), 1-27. | Zbl 0152.22402