For the n-dimensional Hawaiian earring n ≥ 2, and is trivial for each 1 ≤ i ≤ n - 1. Let CX be the cone over a space X and CX ∨ CY be the one-point union with two points of the base spaces X and Y being identified to a point. Then for n ≥ 1.
@article{bwmeta1.element.bwnjournal-article-fmv165i1p17bwm, author = {Katsuya Eda and Kazuhiro Kawamura}, title = {Homotopy and homology groups of the n-dimensional Hawaiian earring}, journal = {Fundamenta Mathematicae}, volume = {163}, year = {2000}, pages = {17-28}, zbl = {0959.55010}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv165i1p17bwm} }
Eda, Katsuya; Kawamura, Kazuhiro. Homotopy and homology groups of the n-dimensional Hawaiian earring. Fundamenta Mathematicae, Tome 163 (2000) pp. 17-28. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv165i1p17bwm/
[00000] [1] M. G. Barratt and J. Milnor, An example of anomalous singular theory, Proc. Amer. Math. Soc. 13 (1962), 293-297. | Zbl 0111.35401
[00001] [2] B. de Smit, The fundamental group of the Hawaiian earring is not free, Internat. J. Algebra Comput. 2 (1992), 33-37. | Zbl 0738.20033
[00002] [3] K. Eda, First countability and local simple connectivity of one point unions, Proc. Amer. Math. Soc. 109 (1990), 237-241. | Zbl 0697.55016
[00003] [4] K. Eda, The first integral singular homology groups of one point unions, Quart. J. Math. Oxford 42 (1991), 443-456. | Zbl 0754.55004
[00004] [5] K. Eda, Free σ-products and noncommutatively slender groups, J. Algebra 148 (1992), 243-263. | Zbl 0779.20012
[00005] [6] K. Eda and K. Kawamura, The singular homology of the Hawaiian earring, J. London Math. Soc., to appear. | Zbl 0958.55004
[00006] [7] H. B. Griffiths, The fundamental group of two spaces with a common point, Quart. J. Math. Oxford 5 (1954), 175-190. | Zbl 0056.16301
[00007] [8] H. B. Griffiths, Infinite products of semigroups and local connectivity, Proc. London Math. Soc. 6 (1956), 455-485. | Zbl 0071.01902
[00008] [9] J. W. Morgan and I. Morrison, A Van Kampen theorem for weak joins, Proc. London Math. Soc. 53 (1986), 562-576. | Zbl 0609.57002
[00009] [10] G. W. Whitehead, Elements of Homotopy Theory, Springer, 1978. | Zbl 0406.55001