Gaussian automorphisms whose ergodic self-joinings are Gaussian
Lemańczyk, Mariusz ; Parreau, F. ; Thouvenot, J.
Fundamenta Mathematicae, Tome 163 (2000), p. 253-293 / Harvested from The Polish Digital Mathematics Library

 We study ergodic properties of the class of Gaussian automorphisms whose ergodic self-joinings remain Gaussian. For such automorphisms we describe the structure of their factors and of their centralizer. We show that Gaussian automorphisms with simple spectrum belong to this class.  We prove a new sufficient condition for non-disjointness of automorphisms giving rise to a better understanding of Furstenberg's problem relating disjointness to the lack of common factors. This and an elaborate study of isomorphisms between classical factors of Gaussian automorphisms allow us to give a complete solution of the disjointness problem between a Gaussian automorphism whose ergodic self-joinings remain Gaussian and an arbitrary Gaussian automorphism.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:212456
@article{bwmeta1.element.bwnjournal-article-fmv164i3p253bwm,
     author = {Mariusz Lema\'nczyk and F. Parreau and J. Thouvenot},
     title = {Gaussian automorphisms whose ergodic self-joinings are Gaussian},
     journal = {Fundamenta Mathematicae},
     volume = {163},
     year = {2000},
     pages = {253-293},
     zbl = {0977.37003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv164i3p253bwm}
}
Lemańczyk, Mariusz; Parreau, F.; Thouvenot, J. Gaussian automorphisms whose ergodic self-joinings are Gaussian. Fundamenta Mathematicae, Tome 163 (2000) pp. 253-293. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv164i3p253bwm/

[00000] [1] I. P. Cornfeld, S. V. Fomin and Ya. G. Sinai, Ergodic Theory, Springer, 1982.

[00001] [2] C. Foiaş et S. Strătilă, Ensembles de Kronecker dans la théorie ergodique, C. R. Acad. Sci. Paris Sér. A 267 (1968), 166-168. | Zbl 0218.60040

[00002] [3] H. Furstenberg, Disjointness in ergodic theory, minimal sets and Diophantine approximation, Math. Systems Theory 1 (1967), 1-49. | Zbl 0146.28502

[00003] [4] H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton Univ. Press, Princeton, NJ, 1981.

[00004] [5] H. Furstenberg and B. Weiss, The finite multipliers of infinite ergodic transformations, in: Lecture Notes in Math. 668, Springer, 1978, 127-132.

[00005] [6] E. Glasner, B. Host and D. Rudolph, Simple systems and their higher order self-joinings, Israel J. Math. 78 (1992), 131-142. | Zbl 0779.28010

[00006] [7] F. Hahn and W. Parry, Some characteristic properties of dynamical systems with quasi-discrete spectrum, Math. Systems Theory 2 (1968), 179-198. | Zbl 0167.32902

[00007] [8] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis II, Springer, New York, 1970. | Zbl 0213.40103

[00008] [9] B. Host, Mixing of all orders and pairwise independent joinings of systems with singular spectrum, Israel J. Math. 76 (1991), 289-298. | Zbl 0790.28010

[00009] [10] B. Host, J.-F. Méla et F. Parreau, Analyse harmonique des mesures, Astérisque 135-136 (1986). | Zbl 0589.43001

[00010] [11] K. Itô, Stochastic Processes I (Russian transl.), Izdat. Inostr. Lit., Moscow, 1960.

[00011] [12] A. Iwanik et J. de Sam Lazaro, Sur la multiplicité Lp d’un automorphisme gaussien, C. R. Acad. Sci. Paris Sér. I 312 (1991), 875-876.

[00012] [13] A. del Junco and M. Lemańczyk, Simple systems are disjoint from Gaussian systems, Studia Math. 133 (1999), 249-256. | Zbl 0931.37001

[00013] [14] A. del Junco, M. Lemańczyk and M. K. Mentzen, Semisimplicity, joinings and group extensions, Studia Math. 112 (1995), 141-164. | Zbl 0814.28007

[00014] [15] A. del Junco and D. Rudolph, On ergodic actions whose self-joinings are graphs, Ergodic Theory Dynam. Systems 7 (1987), 531-557. | Zbl 0646.60010

[00015] [16] M. Ledoux, Inégalités isopérimétriques et calcul stochastique, in: Séminaire de Probabilités XXII, Lecture Notes in Math. 1321, Springer, 1988, 249-259.

[00016] [17] M. Lemańczyk and F. Parreau, On the disjointness problem for Gaussian automorphisms, Proc. Amer. Math. Soc. 127 (1999), 2073-2081. | Zbl 0923.28007

[00017] [18] M. Lemańczyk and J. de Sam Lazaro, Spectral analysis of certain compact factors for Gaussian dynamical systems, Israel J. Math. 98 (1997), 307-328. | Zbl 0880.28013

[00018] [19] P. Leonov, The use of the characteristic functional and semi-invariants in the ergodic theory of stationary processes, Dokl. Akad. Nauk SSSR 133 (1960), 523-526 (in Russian); English transl.: Soviet Math. Dokl. 1 (1960), 878-881.

[00019] [20] W. Mackey, Borel structures in groups and their duals, Trans. Amer. Math. Soc. 85 (1957), 134-169. | Zbl 0082.11201

[00020] [21] D. Newton, On Gaussian processes with simple spectrum, Z. Wahrsch. Verw. Gebiete 5 (1966), 207-209. | Zbl 0142.13804

[00021] [22] J. Neveu, Processus aléatoires gaussiens, Presses Univ. Montréal, 1968. | Zbl 0192.54701

[00022] [23] W. Parry, Topics in Ergodic Theory, Cambridge Univ. Press, 1981. | Zbl 0449.28016

[00023] [24] M. Queffélec, Substitution Dynamical Systems - Spectral Analysis, Lecture Notes in Math. 1294, Springer, 1988.

[00024] [25] D. J. Rudolph, An example of a measure-preserving map with minimal self-joinings and applications, J. Anal. Math. 35 (1979), 97-122. | Zbl 0446.28018

[00025] [26] T. de la Rue, Entropie d’un système dynamique gaussien: Cas d’une action de d, C. R. Acad. Sci. Paris Sér. I 317 (1993), 191-194.

[00026] [27] T. de la Rue, Systèmes dynamiques gaussiens d'entropie nulle, lâchement et non lâchement Bernoulli, Ergodic Theory Dynam. Systems 16 (1996), 1-26.

[00027] [28] T. de la Rue, Rang des systèmes dynamiques gaussiens, Israel J. Math. 104 (1998), 261-283.

[00028] [29] V. V. Ryzhikov, Joinings, intertwining operators, factors and mixing properties of dynamical systems, Russian Acad. Sci. Izv. Math. 42 (1994), 91-114.

[00029] [30] Ya. G. Sinai, The structure and properties of invariant measurable partitions, Dokl. Akad. Nauk SSSR 141 (1961), 1038-1041.

[00030] [31] J.-P. Thouvenot, Une classe de systèmes pour lesquels la conjecture de Pinsker est vraie, Israel J. Math. 21 (1975), 208-214. | Zbl 0329.28009

[00031] [32] J.-P. Thouvenot, The metrical structure of some Gaussian processes, in: Proc. Conf. Ergodic Theory and Related Topics II (Georgenthal, 1986), Teubner Texte Math. 94, Teubner, Leipzig, 1987, 195-198.

[00032] [33] J.-P. Thouvenot, Some properties and applications of joinings in ergodic theory, in: Ergodic Theory and its Connections with Harmonic Analysis (Alexandria, 1993), London Math. Soc. Lecture Note Ser. 205, Cambridge Univ. Press, 1995, 207-235. | Zbl 0848.28009

[00033] [34] J.-P. Thouvenot, Utilisation des processus gaussiens en théorie ergodique, Astérisque 236 (1996), 303-308.

[00034] [35] V. S. Varadarajan, Geometry of Quantum Theory, vol. II, Van Nostrand, 1970. | Zbl 0194.28802

[00035] [36] W. Veech, A criterion for a process to be prime, Monatsh. Math. 94 (1982), 335-341. | Zbl 0499.28016

[00036] [37] M. Vershik, On the theory of normal dynamic systems, Soviet Math. Dokl. 144 (1962), 625-628. | Zbl 0197.39401

[00037] [38] A. M. Vershik, Spectral and metric isomorphism of some normal dynamical systems, ibid., 693-696. | Zbl 0197.39402

[00038] [39] R. Zimmer, Ergodic group actions with generalized discrete spectrum, Illinois J. Math. 20 (1976), 555-588. | Zbl 0349.28011