We realize closed geodesics on the real conformal compactification of the space V = Sym(2, ℝ) of all 2 × 2 real symmetric matrices as knots or 2-component links in and show that these knots or links have certain types of symmetry of period 2.
@article{bwmeta1.element.bwnjournal-article-fmv164i3p241bwm, author = {Sang Lee and Yongdo Lim and Chan-Young Park}, title = {Knots in $S^2 x S^1$ derived from Sym(2, $\mathbb{R}$)}, journal = {Fundamenta Mathematicae}, volume = {163}, year = {2000}, pages = {241-252}, zbl = {0981.57007}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv164i3p241bwm} }
Lee, Sang; Lim, Yongdo; Park, Chan-Young. Knots in $S^2 x S^1$ derived from Sym(2, ℝ). Fundamenta Mathematicae, Tome 163 (2000) pp. 241-252. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv164i3p241bwm/
[00000] [1] W. Bertram, Un théorème de Liouville pour les algèbres de Jordan, Bull. Soc. Math. France 124 (1996), 299-327.
[00001] [2] J. Faraut and A. Korányi, Analysis on Symmetric Cones, Oxford Univ. Press, Oxford, 1994. | Zbl 0841.43002
[00002] [3] R. H. Fox, Knots and periodic transformations, in: Topology of 3-Manifolds and Related Topics (Proc. Univ. of Georgia Institute, 1961), Prentice-Hall, 1962, 177-182.
[00003] [4] K. W. Kwun, Piecewise linear involutions of , Michigan Math. J. 16 (1969), 93-96.
[00004] [5] S. Y. Lee, Y. Lim and C.-Y. Park, Symmetric geodesics on conformal compactifications of Euclidean Jordan algebras, Bull. Austral. Math. Soc. 59 (1999), 187-201. | Zbl 0977.53038
[00005] [6] B. Makarevich, Ideal points of semisimple Jordan algebras, Mat. Zametki 15 (1974), 295-305 (in Russian).
[00006] [7] J. W. Morgan and H. Bass, The Smith Conjecture, Academic Press, 1984. | Zbl 0599.57001
[00007] [8] D. Rolfsen, Knots and Links, Publish or Perish, 1976.
[00008] [9] P. A. Smith, Transformations of finite period II, Ann. of Math. 40 (1939), 690-711. | Zbl 0021.43002
[00009] [10] Y. Tao, On fixed point free involutions of , Osaka Math. J. 14 (1962), 145-152.
[00010] [11] J. L. Tollefson, Involutions on and other 3-manifolds Trans. Amer. Math. Soc. 183 (1973), 139-152. | Zbl 0276.57001