We formulate variants of the cardinals f, p and t in terms of families of measurable functions, in order to examine the effect upon these cardinals of adding one random real.
@article{bwmeta1.element.bwnjournal-article-fmv164i2p165bwm, author = {James Hirschorn}, title = {Towers of measurable functions}, journal = {Fundamenta Mathematicae}, volume = {163}, year = {2000}, pages = {165-192}, zbl = {0964.03053}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv164i2p165bwm} }
Hirschorn, James. Towers of measurable functions. Fundamenta Mathematicae, Tome 163 (2000) pp. 165-192. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv164i2p165bwm/
[00000] [Abr80] F. G. Abramson, A simplicity theorem for amoebas over random reals, Proc. Amer. Math. Soc. 78 (1980), 409-413. | Zbl 0446.03040
[00001] [BD85] J. E. Baumgartner and P. Dordal, Adjoining dominating functions, J. Symbolic Logic 50 (1985), 94-101. | Zbl 0566.03031
[00002] [Bel81] M. G. Bell, On the combinatorial principle P(c), Fund. Math. 114 (1981), 149-157. | Zbl 0581.03038
[00003] [BJ95] T. Bartoszyński and H. Judah, Set Theory. On the Structure of the Real Line, A. K. Peters, Wellesley, MA, 1995.
[00004] [Bla99] A. Blass, Combinatorial cardinal characteristics of the continuum, to appear.
[00005] [BRS96] T. Bartoszyński, A. Rosłanowski and S. Shelah, Adding one random real, J. Symbolic Logic 61 (1996), 80-90. | Zbl 0859.03023
[00006] [BS96] J. Brendle and S. Shelah, Evasion and prediction. II, J. London Math. Soc. (2) 53 (1996), 19-27. | Zbl 0854.03045
[00007] [vD84] E. K. van Douwen, The integers and topology, in: Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 1984, 111-167.
[00008] [Hir00] J. Hirschorn, Towers of Borel functions, Proc. Amer. Math. Soc. 128 (2000), 599-604. | Zbl 0933.03054
[00009] [Laf97] C. Laflamme, Combinatorial aspects of filters with an application to N-sets, Proc. Amer. Math. Soc. 125 (1997), 3019-3025. | Zbl 0883.04004
[00010] [PS87] Z. Piotrowski and A. Szymański, Some remarks on category in topological spaces, ibid. 101 (1987), 156-160. | Zbl 0634.54002
[00011] [Roi79] J. Roitman, Adding a random or a Cohen real: topological consequences and the effect on Martin's axiom, Fund. Math. 103 (1979), 47-60. | Zbl 0442.03034
[00012] [Roi79] J. Roitman, Correction to: "Adding a random or a Cohen real: topological consequences and the effect on Martin's axiom", ibid. 129 (1988), 141. | Zbl 0657.03037
[00013] [Roy88] H. L. Royden, Real Analysis, third ed., Macmillan, New York, 1988.
[00014] [Sco67] D. Scott, A proof of the independence of the continuum hypothesis, Math. Systems Theory 1 (1967), 89-111. | Zbl 0149.25302
[00015] [Vau90] J. E. Vaughan, Small uncountable cardinals and topology, with an appendix by S. Shelah, in: Open Problems in Topology, North-Holland, Amsterdam, 1990, 195-218.