It is well known that the Hubbard tree of a postcritically finite complex polynomial contains all the combinatorial information on the polynomial. In fact, an abstract Hubbard tree as defined in [23] uniquely determines the polynomial up to affine conjugation. In this paper we give necessary and sufficient conditions enabling one to deduce directly from the restriction of a quadratic Misiurewicz polynomial to its Hubbard tree whether the polynomial is renormalizable, and in this case, of which type. Moreover, we study dynamical features such as entropy, transitivity or periodic structure of the polynomial restricted to the Hubbard tree, and compare them with the properties of the polynomial on its Julia set. In other words, we want to study how much of the "dynamical information" about the polynomial is captured by the Hubbard tree.
@article{bwmeta1.element.bwnjournal-article-fmv164i2p115bwm, author = {Llu\'\i s Alsed\`a and N\'uria Fagella}, title = {Dynamics on Hubbard trees}, journal = {Fundamenta Mathematicae}, volume = {163}, year = {2000}, pages = {115-141}, zbl = {0970.37033}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv164i2p115bwm} }
Alsedà, Lluís; Fagella, Núria. Dynamics on Hubbard trees. Fundamenta Mathematicae, Tome 163 (2000) pp. 115-141. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv164i2p115bwm/
[00000] [1] R. Adler, A. Konheim and J. McAndrew, Topological entropy, Trans. Amer. Math. Soc. 114 (1965), 309-319. | Zbl 0127.13102
[00001] [2] Ll. Alsedà, S. Baldwin, J. Llibre and M. Misiurewicz, Entropy of transitive tree maps, Topology 36 (1996), 519-532. | Zbl 0887.58013
[00002] [3] Ll. Alsedà, S. Kolyada, J. Llibre and Ľ. Snoha, Entropy and periodic points for transitive maps, Trans. Amer. Math. Soc. 351 (1999), 1551-1573. | Zbl 0913.58034
[00003] [4] Ll. Alsedà, J. Llibre and M. Misiurewicz, Combinatorial Dynamics and Entropy in Dimension One, Adv. Ser. Nonlinear Dynamics 5, World Sci., Singapore, 1993. | Zbl 0843.58034
[00004] [5] Ll. Alsedà, M. A. del Río and J. A. Rodríguez, A splitting theorem for transitive maps, J. Math. Anal. Appl. 232 (1999), 359-375. | Zbl 0959.37032
[00005] [6] Ll. Alsedà, M. A. del Río and J. A. Rodríguez, Cofiniteness of the set of periods for totally transitive tree maps, Internat. J. Bifur. Chaos 9 (1999), 1877-1880. | Zbl 1089.37519
[00006] [7] A. Beardon, Iteration of Rational Functions, Grad. Texts in Math. 132, Springer, New York, 1991.
[00007] [8] P. Blanchard, Complex analytic dynamics on the Riemann sphere, Bull. Amer. Math. Soc. 11 (1984), 85-141. | Zbl 0558.58017
[00008] [9] L. Block, J. Guckenheimer, M. Misiurewicz and L.-S. Young, Periodic points and topological entropy of one dimensional maps, in: Global Theory of Dynamical Systems, Lecture Notes in Math. 819, Springer, Berlin, 1980, 18-34.
[00009] [10] A. M. Blokh, On transitive mappings of one-dimensional branched manifolds, in: Diff.-Difference Equations and Problems of Mathematical Physics, Inst. of Math., Kiev, 1984, 3-9 (in Russian).
[00010] [11] A. M. Blokh, On the connection between entropy and transitivity for one-dimensional mappings, Russian Math. Surveys 42 (1987), 165-166. | Zbl 0774.28011
[00011] [12] L. Carleson and T. Gamelin, Complex Dynamics, Springer, New York, 1993. | Zbl 0782.30022
[00012] [13] M. Denker, C. Grillenberger and K. Sigmund, Ergodic Theory on Compact Spaces, Lecture Notes in Math. 527, Springer, Berlin, 1976. | Zbl 0328.28008
[00013] [14] A. Douady et J. Hubbard, Etude dynamique des polynômes complexes, part I, Publ. Math. Orsay, 1984-1985. | Zbl 0552.30018
[00014] [15] A. Douady et J. Hubbard, On the dynamics of polynomial-like mappings, Ann. Sci. Ecole Norm. Sup. 18 (1985), 287-343. | Zbl 0587.30028
[00015] [16] A. Eremenko and M. Lyubich, The dynamics of analytic transformations, Leningrad Math. J. 1 (1990), 563-634. | Zbl 0717.58029
[00016] [17] F. R. Gantmacher, The Theory of Matrices, Vol. 2, Chelsea, New York, 1959. | Zbl 0085.01001
[00017] [18] J. Hubbard, Puzzles and quadratic tableaux (according to Yoccoz), preprint, 1990.
[00018] [19] C. T. McMullen, Complex Dynamics and Renormalization, Princeton Univ. Press, 1994. | Zbl 0822.30002
[00019] [20] J. Milnor, Dynamics in One Complex Variable: Introductory Lectures, Vieweg, 1999.
[00020] [21] J. Milnor, Local connectivity of Julia sets: expository lectures, Stony Brook preprint no. 1990/5 (1992).
[00021] [22] C. L. Petersen, On the Pommerenke-Levin-Yoccoz inequality, Ergodic Theory Dynam. Systems 13 (1993), 785-806. | Zbl 0802.30022
[00022] [23] A. Poirier, On postcritically finite polynomials. Part two: Hubbard trees, Stony Brook preprint no. 1993/7.
[00023] [24] Se E. Seneta, Non-Negative Matrices and Markov Chains, Springer Ser. in Statist., Springer, Berlin, 1981.
[00024] [25] N. Steinmetz, Rational Iteration: Complex Analytic Dynamical Systems, de Gruyter, 1993.
[00025] [26] P. Walters, An Introduction to Ergodic Theory, Grad. Texts in Math. 79, Springer, New York, 1982.