Let f be a polynomial of one complex variable so that its Julia set is connected. We show that the harmonic (Brolin) measure of the set of biaccessible points in J is zero except for the case when J is an interval.
@article{bwmeta1.element.bwnjournal-article-fmv163i3p277bwm, author = {Anna Zdunik}, title = {On biaccessible points in Julia sets of polynomials}, journal = {Fundamenta Mathematicae}, volume = {163}, year = {2000}, pages = {277-286}, zbl = {0983.37053}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv163i3p277bwm} }
Zdunik, Anna. On biaccessible points in Julia sets of polynomials. Fundamenta Mathematicae, Tome 163 (2000) pp. 277-286. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv163i3p277bwm/
[00000] [DMNU] M. Denker, R. D. Mauldin, Z. Nitecki and M. Urbański, Conformal measures for rational functions revisited, Fund. Math. 157 (1998), 161-173. | Zbl 0915.58041
[00001] [DU] M. Denker and M. Urbański, Ergodic theory of equillibrium states for rational maps, Nonlinearity 4 (1991), 103-134. | Zbl 0718.58035
[00002] [DH] A. Douady et J. Hubbard, Etude dynamique des polynômes complexes (première partie), Publ. Math. d'Orsay, 84-02.
[00003] [FKS] S. Fomin, I. Kornfeld and Ya. Sinai, Ergodic Theory, Springer, Berlin, 1982.
[00004] [FLM] A. Freire, A. Lopes and R. Mañé, An invariant measure for rational maps, Bol. Soc. Brasil. Mat. 14 (1983), 45-62. | Zbl 0568.58027
[00005] [Ja] M. Jakobson, On the classification of polynomial endomorphisms of the plane, Mat. Sb. 80 (1969), 365-387 (in Russian).
[00006] [Ma] R. Mañé, On the Bernoulli property for rational maps, Ergodic Theory Dynam. Systems 5 (1985), 71-88. | Zbl 0605.28011
[00007] [Po] C. Pommerenke, Boundary Behaviour of Conformal Maps, Springer, Berlin, 1992. | Zbl 0762.30001
[00008] [P] F. Przytycki, Remarks on simple connectedness of basins of sinks for iterations of rational maps, in: Banach Center Publ. 23, PWN, 1989, 229-235. | Zbl 0703.58033
[00009] [PUbook] F. Przytycki and M. Urbański, Fractals in the Plane-Ergodic Theory Methods, to appear; preliminary version at www.math.unt.edu/urbanski.
[00010] [Th] W. Thurston, On the dynamics of iterated rational maps, preprint.
[00011] [Za] S. Zakeri, Biaccessibility in quadratic Julia sets, I: the locally connected case, preprint SUNY, Stony Brook, 1998.
[00012] [Z] A. Zdunik, Parabolic orbifolds and the dimension of the maximal measure for rational maps, Invent. Math. 99 (1990), 627-649. | Zbl 0820.58038