PCA sets and convexity
Kaufman, R.
Fundamenta Mathematicae, Tome 163 (2000), p. 267-275 / Harvested from The Polish Digital Mathematics Library

Three sets occurring in functional analysis are shown to be of class PCA (also called Σ21) and to be exactly of that class. The definition of each set is close to the usual objects of modern analysis, but some subtlety causes the sets to have a greater complexity than expected. Recent work in a similar direction is in [1, 2, 10, 11, 12].

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:212443
@article{bwmeta1.element.bwnjournal-article-fmv163i3p267bwm,
     author = {R. Kaufman},
     title = {PCA sets and convexity},
     journal = {Fundamenta Mathematicae},
     volume = {163},
     year = {2000},
     pages = {267-275},
     zbl = {0968.03055},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv163i3p267bwm}
}
Kaufman, R. PCA sets and convexity. Fundamenta Mathematicae, Tome 163 (2000) pp. 267-275. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv163i3p267bwm/

[00000] [1] H. Becker, Pointwise limits of sequences and Σ21 sets, Fund. Math. 128 (1987), 159-170.

[00001] [2] H. Becker, S. Kahane and A. Louveau, Some complete Σ21 sets in harmonic analysis, Trans. Amer. Math. Soc. 339 (1993), 323-336. | Zbl 0799.04006

[00002] [3] B. Bossard, Théorie descriptive des ensembles en géométrie des espaces de Banach, thèse, Univ. Paris VII, 199?.

[00003] [4] B. Bossard, Co-analytic families of norms on a separable Banach space, Illinois J. Math. 40 (1996), 162-181.

[00004] [5] B. Bossard, G. Godefroy and R. Kaufman, Hurewicz's theorems and renorming of Banach spaces, J. Funct. Anal. 140 (1996), 142-150. | Zbl 0872.46003

[00005] [6] R. G. Bourgin, Geometric Aspects of Convex Sets with Radon-Nikodým Property, Lecture Notes in Math. 993, Springer, 1983. | Zbl 0512.46017

[00006] [7] R. Deville, G. Godefroy and V. Zizler, Smoothness and Renormings in Banach Spaces, Pitman Monogr. Surveys Pure Appl. Math. 64, Longman Sci. Tech., 1993. | Zbl 0782.46019

[00007] [8] G. A. Edgar, A noncompact Choquet theorem, Proc. Amer. Math. Soc. 49 (1975), 354-358. | Zbl 0273.46012

[00008] [9] J. E. Jayne and C. A. Rogers, The extremal structure of convex sets, J. Funct. Anal. 26 (1977), 251-288. | Zbl 0411.46008

[00009] [10] R. Kaufman, Co-analytic sets and extreme points, Bull. London Math. Soc. 19 (1987), 72-74. | Zbl 0601.54041

[00010] [11] R. Kaufman, Topics on analytic sets, Fund. Math. 139 (1991), 217-229. | Zbl 0764.28002

[00011] [12] R. Kaufman, Extreme points and descriptive sets, ibid. 143 (1993), 179-181. | Zbl 0832.54031

[00012] [13] R. R. Phelps, Lectures on Choquet's Theorem, Van Nostrand Math. Stud. 7, Van Nostrand, Princeton, NJ, 1966. | Zbl 0135.36203