Three sets occurring in functional analysis are shown to be of class PCA (also called ) and to be exactly of that class. The definition of each set is close to the usual objects of modern analysis, but some subtlety causes the sets to have a greater complexity than expected. Recent work in a similar direction is in [1, 2, 10, 11, 12].
@article{bwmeta1.element.bwnjournal-article-fmv163i3p267bwm, author = {R. Kaufman}, title = {PCA sets and convexity}, journal = {Fundamenta Mathematicae}, volume = {163}, year = {2000}, pages = {267-275}, zbl = {0968.03055}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv163i3p267bwm} }
Kaufman, R. PCA sets and convexity. Fundamenta Mathematicae, Tome 163 (2000) pp. 267-275. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv163i3p267bwm/
[00000] [1] H. Becker, Pointwise limits of sequences and sets, Fund. Math. 128 (1987), 159-170.
[00001] [2] H. Becker, S. Kahane and A. Louveau, Some complete sets in harmonic analysis, Trans. Amer. Math. Soc. 339 (1993), 323-336. | Zbl 0799.04006
[00002] [3] B. Bossard, Théorie descriptive des ensembles en géométrie des espaces de Banach, thèse, Univ. Paris VII, 199?.
[00003] [4] B. Bossard, Co-analytic families of norms on a separable Banach space, Illinois J. Math. 40 (1996), 162-181.
[00004] [5] B. Bossard, G. Godefroy and R. Kaufman, Hurewicz's theorems and renorming of Banach spaces, J. Funct. Anal. 140 (1996), 142-150. | Zbl 0872.46003
[00005] [6] R. G. Bourgin, Geometric Aspects of Convex Sets with Radon-Nikodým Property, Lecture Notes in Math. 993, Springer, 1983. | Zbl 0512.46017
[00006] [7] R. Deville, G. Godefroy and V. Zizler, Smoothness and Renormings in Banach Spaces, Pitman Monogr. Surveys Pure Appl. Math. 64, Longman Sci. Tech., 1993. | Zbl 0782.46019
[00007] [8] G. A. Edgar, A noncompact Choquet theorem, Proc. Amer. Math. Soc. 49 (1975), 354-358. | Zbl 0273.46012
[00008] [9] J. E. Jayne and C. A. Rogers, The extremal structure of convex sets, J. Funct. Anal. 26 (1977), 251-288. | Zbl 0411.46008
[00009] [10] R. Kaufman, Co-analytic sets and extreme points, Bull. London Math. Soc. 19 (1987), 72-74. | Zbl 0601.54041
[00010] [11] R. Kaufman, Topics on analytic sets, Fund. Math. 139 (1991), 217-229. | Zbl 0764.28002
[00011] [12] R. Kaufman, Extreme points and descriptive sets, ibid. 143 (1993), 179-181. | Zbl 0832.54031
[00012] [13] R. R. Phelps, Lectures on Choquet's Theorem, Van Nostrand Math. Stud. 7, Van Nostrand, Princeton, NJ, 1966. | Zbl 0135.36203