Filters and sequences
Solecki, Sławomir
Fundamenta Mathematicae, Tome 163 (2000), p. 215-228 / Harvested from The Polish Digital Mathematics Library

We consider two situations which relate properties of filters with properties of the limit operators with respect to these filters. In the first one, we show that the space of sequences having limits with respect to a Π30 filter is itself Π30 and therefore, by a result of Dobrowolski and Marciszewski, such spaces are topologically indistinguishable. This answers a question of Dobrowolski and Marciszewski. In the second one, we characterize universally measurable filters which fulfill Fatou’s lemma.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:212440
@article{bwmeta1.element.bwnjournal-article-fmv163i3p215bwm,
     author = {S\l awomir Solecki},
     title = {Filters and sequences},
     journal = {Fundamenta Mathematicae},
     volume = {163},
     year = {2000},
     pages = {215-228},
     zbl = {0976.03053},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv163i3p215bwm}
}
Solecki, Sławomir. Filters and sequences. Fundamenta Mathematicae, Tome 163 (2000) pp. 215-228. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv163i3p215bwm/

[00000] [DM] T. Dobrowolski and W. Marciszewski, Classification of function spaces with the pointwise topology determined by a countable dense set, Fund. Math. 148 (1995), 35-62. | Zbl 0834.46016

[00001] [K] A. S. Kechris, Classical Descriptive Set Theory, Springer, 1995.

[00002] [L] A. Louveau, Sur la génération des fonctions boréliennes fortement affines sur un convexe compact métrisable, Ann. Inst. Fourier (Grenoble) 36 (1986), no. 2, 57-68. | Zbl 0604.46012

[00003] [M] K. Mazur, Fσ-ideals and ω1ω1*-gaps in the Boolean algebra P(ω)/I, Fund. Math. 138 (1991), 103-111.

[00004] [R] H. L. Royden, Real Analysis, Macmillan, 1988. | Zbl 0704.26006