Magnetic flows and Gaussian thermostats on manifolds of negative curvature
Wojtkowski, Maciej
Fundamenta Mathematicae, Tome 163 (2000), p. 177-191 / Harvested from The Polish Digital Mathematics Library

We consider a class of flows which includes both magnetic flows and Gaussian thermostats of external fields. We give sufficient conditions for such flows on manifolds of negative sectional curvature to be Anosov.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:212437
@article{bwmeta1.element.bwnjournal-article-fmv163i2p177bwm,
     author = {Maciej Wojtkowski},
     title = {Magnetic flows and Gaussian thermostats on manifolds of negative curvature},
     journal = {Fundamenta Mathematicae},
     volume = {163},
     year = {2000},
     pages = {177-191},
     zbl = {0997.37011},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv163i2p177bwm}
}
Wojtkowski, Maciej. Magnetic flows and Gaussian thermostats on manifolds of negative curvature. Fundamenta Mathematicae, Tome 163 (2000) pp. 177-191. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv163i2p177bwm/

[00000] [A-S] D. V. Anosov and Ya. G. Sinai, Certain smooth ergodic systems, Russian Math. Surveys 22 (1967), 103-167.

[00001] [B-C-P] F. Bonetto, E. G. D. Cohen and C. Pugh, On the validity of the conjugate pairing rule for Lyapunov exponents, J. Statist. Phys. 92 (1998), 587-627. | Zbl 0948.82024

[00002] [B-G-M] F. Bonetto, G. Gentile and V. Mastropietro, Electric fields on a surface of constant negative curvature, Ergodic Theory Dynam. Systems, to appear. | Zbl 0959.37021

[00003] [D-M] C. P. Dettmann and G. P. Morriss, Proof of Lyapunov exponent pairing for systems at constant kinetic energy, Phys. Rev. E 53 (1996), R5541-5544.

[00004] [E-C-M] D. J. Evans, E. G. D. Cohen and G. P. Morriss, Viscosity of a simple fluid from its maximal Lyapunov exponents, Phys. Rev. A 42 (1990), 5990-5997.

[00005] [Go] N. Gouda, Magnetic flows of Anosov type, Tôhoku Math. J. 49 (1997), 165-183. | Zbl 0938.37011

[00006] [Gr] S. Grognet, Flots magnétiques en courbure négative, Ergodic Theory Dynam. Systems 19 (1999), 413-436.

[00007] [H] W. G. Hoover, Molecular Dynamics, Lecture Notes in Physics 258, Springer, 1986. | Zbl 0615.76004

[00008] [K-B] A. Katok (in collaboration with K. Burns), Infinitesimal Lyapunov functions, invariant cone families and stochastic properties of smooth dynamical systems, Ergodic Theory Dynam. Systems 14 (1994), 757-786.

[00009] [K-H] A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Cambridge Univ. Press, 1995. | Zbl 0878.58020

[00010] [L-Y] F. Ledrappier and L.-S. Young, The metric entropy of diffeomorphisms: I. Characterization of measures satisfying Pesin's formula, II. Relations between entropy, exponents and dimension, Ann. of Math. 122 (1985), 509-539, 540-574. | Zbl 0605.58028

[00011] [L] J. Lewowicz, Lyapunov functions and topological stability, J. Differential Equations 38 (1980), 192-209. | Zbl 0418.58012

[00012] [P-P] G. P. Paternain and M. Paternain, Anosov geodesic flows and twisted symplectic structures, in: Dynamical Systems (Montevideo, 1995), Pitman Res. Notes Math. 362, Longman, 1996, 132-145. | Zbl 0868.58062

[00013] [R] D. Ruelle, Positivity of entropy production in nonequilibrium statistical mechanics, J. Statist. Phys. 85 (1996), 1-23. | Zbl 0973.37014

[00014] [V] I. Vaisman, Locally conformal symplectic manifolds, Internat. J. Math. Math. Sci. 8 (1985), 521-536. | Zbl 0585.53030

[00015] [W] M. P. Wojtkowski, Systems of classical interacting particles with nonvanishing Lyapunov exponents, in: Lecture Notes in Math. 1486, Springer, 1991, 243-262. | Zbl 0744.58023

[00016] [W-L] M. P. Wojtkowski and C. Liverani, Conformally symplectic dynamics and symmetry of the Lyapunov spectrum, Comm. Math. Phys. 194 (1998), 47-60. | Zbl 0951.37016