We consider a class of flows which includes both magnetic flows and Gaussian thermostats of external fields. We give sufficient conditions for such flows on manifolds of negative sectional curvature to be Anosov.
@article{bwmeta1.element.bwnjournal-article-fmv163i2p177bwm, author = {Maciej Wojtkowski}, title = {Magnetic flows and Gaussian thermostats on manifolds of negative curvature}, journal = {Fundamenta Mathematicae}, volume = {163}, year = {2000}, pages = {177-191}, zbl = {0997.37011}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv163i2p177bwm} }
Wojtkowski, Maciej. Magnetic flows and Gaussian thermostats on manifolds of negative curvature. Fundamenta Mathematicae, Tome 163 (2000) pp. 177-191. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv163i2p177bwm/
[00000] [A-S] D. V. Anosov and Ya. G. Sinai, Certain smooth ergodic systems, Russian Math. Surveys 22 (1967), 103-167.
[00001] [B-C-P] F. Bonetto, E. G. D. Cohen and C. Pugh, On the validity of the conjugate pairing rule for Lyapunov exponents, J. Statist. Phys. 92 (1998), 587-627. | Zbl 0948.82024
[00002] [B-G-M] F. Bonetto, G. Gentile and V. Mastropietro, Electric fields on a surface of constant negative curvature, Ergodic Theory Dynam. Systems, to appear. | Zbl 0959.37021
[00003] [D-M] C. P. Dettmann and G. P. Morriss, Proof of Lyapunov exponent pairing for systems at constant kinetic energy, Phys. Rev. E 53 (1996), R5541-5544.
[00004] [E-C-M] D. J. Evans, E. G. D. Cohen and G. P. Morriss, Viscosity of a simple fluid from its maximal Lyapunov exponents, Phys. Rev. A 42 (1990), 5990-5997.
[00005] [Go] N. Gouda, Magnetic flows of Anosov type, Tôhoku Math. J. 49 (1997), 165-183. | Zbl 0938.37011
[00006] [Gr] S. Grognet, Flots magnétiques en courbure négative, Ergodic Theory Dynam. Systems 19 (1999), 413-436.
[00007] [H] W. G. Hoover, Molecular Dynamics, Lecture Notes in Physics 258, Springer, 1986. | Zbl 0615.76004
[00008] [K-B] A. Katok (in collaboration with K. Burns), Infinitesimal Lyapunov functions, invariant cone families and stochastic properties of smooth dynamical systems, Ergodic Theory Dynam. Systems 14 (1994), 757-786.
[00009] [K-H] A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Cambridge Univ. Press, 1995. | Zbl 0878.58020
[00010] [L-Y] F. Ledrappier and L.-S. Young, The metric entropy of diffeomorphisms: I. Characterization of measures satisfying Pesin's formula, II. Relations between entropy, exponents and dimension, Ann. of Math. 122 (1985), 509-539, 540-574. | Zbl 0605.58028
[00011] [L] J. Lewowicz, Lyapunov functions and topological stability, J. Differential Equations 38 (1980), 192-209. | Zbl 0418.58012
[00012] [P-P] G. P. Paternain and M. Paternain, Anosov geodesic flows and twisted symplectic structures, in: Dynamical Systems (Montevideo, 1995), Pitman Res. Notes Math. 362, Longman, 1996, 132-145. | Zbl 0868.58062
[00013] [R] D. Ruelle, Positivity of entropy production in nonequilibrium statistical mechanics, J. Statist. Phys. 85 (1996), 1-23. | Zbl 0973.37014
[00014] [V] I. Vaisman, Locally conformal symplectic manifolds, Internat. J. Math. Math. Sci. 8 (1985), 521-536. | Zbl 0585.53030
[00015] [W] M. P. Wojtkowski, Systems of classical interacting particles with nonvanishing Lyapunov exponents, in: Lecture Notes in Math. 1486, Springer, 1991, 243-262. | Zbl 0744.58023
[00016] [W-L] M. P. Wojtkowski and C. Liverani, Conformally symplectic dynamics and symmetry of the Lyapunov spectrum, Comm. Math. Phys. 194 (1998), 47-60. | Zbl 0951.37016