The measure algebra does not always embed
Dow, Alan ; Hart, Klaas
Fundamenta Mathematicae, Tome 163 (2000), p. 163-176 / Harvested from The Polish Digital Mathematics Library

The Open Colouring Axiom implies that the measure algebra cannot be embedded into P(ℕ)/fin. We also discuss errors in previous results on the embeddability of the measure algebra.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:212436
@article{bwmeta1.element.bwnjournal-article-fmv163i2p163bwm,
     author = {Alan Dow and Klaas Hart},
     title = {The measure algebra does not always embed},
     journal = {Fundamenta Mathematicae},
     volume = {163},
     year = {2000},
     pages = {163-176},
     zbl = {1010.28003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv163i2p163bwm}
}
Dow, Alan; Hart, Klaas. The measure algebra does not always embed. Fundamenta Mathematicae, Tome 163 (2000) pp. 163-176. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv163i2p163bwm/

[00000] [1] M. Bekkali, Topics in Set Theory, Lecture Notes in Math. 1476, Springer, Berlin, 1991. | Zbl 0729.03022

[00001] [2] M. G. Bell, Compact ccc nonseparable spaces of small weight, Topology Proc. 5 (1980), 11-25. | Zbl 0464.54017

[00002] [3] M. Burke, Liftings for Lebesgue measure, in: Set Theory of the Reals, H. Judah (ed.), Israel Math. Conf. Proc. 6, Amer. Math. Soc., Providence, RI, 1993, 119-150. | Zbl 0840.03038

[00003] [4] E. K. van Douwen, The integers and topology, in: Kunen and Vaughan [10], 111-167.

[00004] [5] A. Dow and K. P. Hart, ω* has (almost) no continuous images, Israel J. Math. 109 (1999), 29-39. | Zbl 0931.54024

[00005] [6] I. Farah, Analytic ideals and their quotients, Ph.D. thesis, Univ. of Toronto, 1997.

[00006] [7] R. Frankiewicz, Some remarks on embeddings of Boolean algebras and topological spaces, II, Fund. Math. 126 (1985), 63-68. | Zbl 0579.03037

[00007] [8] R. Frankiewicz and A. Gutek, Some remarks on embeddings of Boolean algebras and the topological spaces, I, Bull. Acad. Polon. Sci. Sér. Sci. Math. 29 (1981), 471-476. | Zbl 0472.03044

[00008] [9] W. Just, A weak version of AT from OCA, in: Set Theory of the Continuum, H. Judah, W. Just and H. Woodin (eds.), Math. Sci. Res. Inst. Publ. 26, Springer, Berlin, 1992, 281-291. | Zbl 0824.04003

[00009] [10] K. Kunen and J. E. Vaughan (eds.), Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 1984. | Zbl 0546.00022

[00010] [11] N. N. Luzin, On subset of the series of natural numbers, Izv. Akad. Nauk SSSR Ser. Mat. 11 (1947), 403-410 (in Russian).

[00011] [12] J. van Mill, Weak P-points in Čech-Stone compactifications, Trans. Amer. Math. Soc. 273 (1982), 657-678. | Zbl 0498.54022

[00012] [13] J. van Mill, An introduction to βω, in: Kunen and Vaughan [10], 503-568.

[00013] [14] I. I. Parovičenko [I. I. Parovichenko], A universal bicompact of weight ℵ, Soviet Math. Dokl. 4 (1963), 592-595; Russian original: Dokl. Akad. Nauk SSSR 150 (1963), 36-39.

[00014] [15] S. Shelah, Proper Forcing, Lecture Notes in Math. 940, Springer, Berlin, 1982.

[00015] [16] S. Shelah, Lifting problem for the measure algebra, Israel J. Math 45 (1983), 90-96. | Zbl 0549.03041

[00016] [17] S. Shelah, Proper and Improper Forcing, Perspect. Math. Logic, Springer, Berlin, 1998. | Zbl 0889.03041

[00017] [18] S. Todorčević, Partition Problems in Topology, Contemp. Math. 34, Amer. Math. Soc., Providence, RI, 1989. | Zbl 0659.54001