Countable Toronto spaces
Gruenhage, Gary ; Moore, J.
Fundamenta Mathematicae, Tome 163 (2000), p. 143-162 / Harvested from The Polish Digital Mathematics Library

A space X is called an α-Toronto space if X is scattered of Cantor-Bendixson rank α and is homeomorphic to each of its subspaces of the same rank. We answer a question of Steprāns by constructing a countable α-Toronto space for each α ≤ ω. We also construct consistent examples of countable α-Toronto spaces for each α<ω1.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:212435
@article{bwmeta1.element.bwnjournal-article-fmv163i2p143bwm,
     author = {Gary Gruenhage and J. Moore},
     title = {Countable Toronto spaces},
     journal = {Fundamenta Mathematicae},
     volume = {163},
     year = {2000},
     pages = {143-162},
     zbl = {0958.54041},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv163i2p143bwm}
}
Gruenhage, Gary; Moore, J. Countable Toronto spaces. Fundamenta Mathematicae, Tome 163 (2000) pp. 143-162. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv163i2p143bwm/

[00000] [F] Z. Frolík, Fixed point maps of βN, Bull. Amer. Math. Soc. 74 (1968), 187-191. | Zbl 0206.51902

[00001] [Ka] M. Katětov, On idempotent filters, Časopis Pěst. Mat. 102 (1977), 412-418. | Zbl 0375.54007

[00002] [Ku] K. Kunen, Set Theory, North-Holland, Amsterdam, 1980.

[00003] [S] J. Steprāns, Steprāns' problems, in: Open Problems in Topology, J. van Mill and G. M. Reed (eds.), North-Holland, Amsterdam, 1990, 13-20.