A space X is called an α-Toronto space if X is scattered of Cantor-Bendixson rank α and is homeomorphic to each of its subspaces of the same rank. We answer a question of Steprāns by constructing a countable α-Toronto space for each α ≤ ω. We also construct consistent examples of countable α-Toronto spaces for each .
@article{bwmeta1.element.bwnjournal-article-fmv163i2p143bwm, author = {Gary Gruenhage and J. Moore}, title = {Countable Toronto spaces}, journal = {Fundamenta Mathematicae}, volume = {163}, year = {2000}, pages = {143-162}, zbl = {0958.54041}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv163i2p143bwm} }
Gruenhage, Gary; Moore, J. Countable Toronto spaces. Fundamenta Mathematicae, Tome 163 (2000) pp. 143-162. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv163i2p143bwm/
[00000] [F] Z. Frolík, Fixed point maps of βN, Bull. Amer. Math. Soc. 74 (1968), 187-191. | Zbl 0206.51902
[00001] [Ka] M. Katětov, On idempotent filters, Časopis Pěst. Mat. 102 (1977), 412-418. | Zbl 0375.54007
[00002] [Ku] K. Kunen, Set Theory, North-Holland, Amsterdam, 1980.
[00003] [S] J. Steprāns, Steprāns' problems, in: Open Problems in Topology, J. van Mill and G. M. Reed (eds.), North-Holland, Amsterdam, 1990, 13-20.