Déformation J-équivalente de polynômes géometriquement finis
Haïssinsky, Peter
Fundamenta Mathematicae, Tome 163 (2000), p. 131-141 / Harvested from The Polish Digital Mathematics Library

Any geometrically finite polynomial f of degree d ≥ 2 with connected Julia set is accessible by structurally stable sub-hyperbolic polynomials of the same degree. Moreover, they are topologically conjugate to f on their Julia sets.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:212434
@article{bwmeta1.element.bwnjournal-article-fmv163i2p131bwm,
     author = {Peter Ha\"\i ssinsky},
     title = {D\'eformation J-\'equivalente de polyn\^omes g\'eometriquement finis},
     journal = {Fundamenta Mathematicae},
     volume = {163},
     year = {2000},
     pages = {131-141},
     zbl = {0959.37037},
     language = {fra},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv163i2p131bwm}
}
Haïssinsky, Peter. Déformation J-équivalente de polynômes géometriquement finis. Fundamenta Mathematicae, Tome 163 (2000) pp. 131-141. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv163i2p131bwm/

[00000] [1] L. Ahlfors, Lectures on Quasiconformal Mappings, Van Nostrand, 1966.

[00001] [2] H. Brolin, Invariant sets under iteration of rational functions, Ark. Mat. 6 (1965), 103-144. | Zbl 0127.03401

[00002] [3] G. Cui, Geometrically finite rational maps with given combinatorics, preprint, 1997.

[00003] [4] G. David, Solutions de l’équation de Beltrami avec ||μ||=1, Ann. Acad. Sci. Fenn. Ser. A I Math. 13 (1988), 25-70. | Zbl 0619.30024

[00004] [5] A. Douady, Descriptions of compact sets in ℂ, in: Topological Methods in Modern Mathematics (Stony Brook, NY, 1991), Publish or Perish, Houston, TX, 1993, 429-465.

[00005] [6] A. Douady et J. H. Hubbard, Étude dynamique des polynômes complexes I, II, Publ. Math. Orsay 84-02 et 85-05, 1984/85. | Zbl 0552.30018

[00006] [7] A. Douady et J. H. Hubbard, On the dynamics of polynomial-like mappings, Ann. Sci. École Norm. Sup. 18 (1985), 287-343. | Zbl 0587.30028

[00007] [8] L. R. Goldberg and J. Milnor, Fixed points of polynomial maps. II. Fixed point portraits, ibid. 26 (1993), 51-98. | Zbl 0771.30028

[00008] [9] P. Haïssinsky, Applications de la chirurgie holomorphe, notamment aux points paraboliques, thèse de l'Université de Paris-Sud, Orsay, 1998.

[00009] [10] P. Haïssinsky, Chirurgie parabolique, C. R. Acad. Sci. Paris 327 (1998), 195-198.

[00010] [11] R. Ma né, P. Sad and D. Sullivan, On the dynamics of rational maps, Ann. Sci. École Norm. Sup. 16 (1983), 193-217. | Zbl 0524.58025

[00011] [12] C. T. McMullen and D. P. Sullivan, Quasiconformal homeomorphisms and dynamics III. The Teichmüller space of a holomorphic dynamical system, Adv. Math. 135 (1998), 351-395. | Zbl 0926.30028

[00012] [13] J. Milnor, Dynamics in One Complex Variable: Introductory Lectures, Vieweg, Braunschweig, 1999. | Zbl 0946.30013

[00013] [14] M. Shishikura, On the quasiconformal surgery of rational functions, Ann. Sci. École Norm. Sup. 20 (1987), 1-29. | Zbl 0621.58030