On ergodicity of some cylinder flows
Frączek, Krzysztof
Fundamenta Mathematicae, Tome 163 (2000), p. 117-130 / Harvested from The Polish Digital Mathematics Library

We study ergodicity of cylinder flows of the form   Tf:T×T×, Tf(x,y)=(x+α,y+f(x)), where f:T is a measurable cocycle with zero integral. We show a new class of smooth ergodic cocycles. Let k be a natural number and let f be a function such that Dkf is piecewise absolutely continuous (but not continuous) with zero sum of jumps. We show that if the points of discontinuity of Dkf have some good properties, then Tf is ergodic. Moreover, there exists εf>0 such that if v:T is a function with zero integral such that Dkv is of bounded variation with Var(Dkv)<εf, then Tf+v is ergodic.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:212433
@article{bwmeta1.element.bwnjournal-article-fmv163i2p117bwm,
     author = {Krzysztof Fr\k aczek},
     title = {On ergodicity of some cylinder flows},
     journal = {Fundamenta Mathematicae},
     volume = {163},
     year = {2000},
     pages = {117-130},
     zbl = {0979.37005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv163i2p117bwm}
}
Frączek, Krzysztof. On ergodicity of some cylinder flows. Fundamenta Mathematicae, Tome 163 (2000) pp. 117-130. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv163i2p117bwm/

[00000] [1] I. P. Cornfeld, S. V. Fomin and Ya. G. Sinai, Ergodic Theory, Springer, Berlin, 1982.

[00001] [2] H. Furstenberg, Strict ergodicity and transformations on the torus, Amer. J. Math. 83 (1961), 573-601. | Zbl 0178.38404

[00002] [3] P. Gabriel, M. Lemańczyk et P. Liardet, Ensemble d'invariants pour les produits croisés de Anzai, Mém. Soc. Math. France 47 (1991). | Zbl 0754.28011

[00003] [4] P. Hellekalek and G. Larcher, On the ergodicity of a class of skew products, Israel J. Math. 54 (1986), 301-306. | Zbl 0609.28007

[00004] [5] M. R. Herman, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Publ. Mat. IHES 49 (1979), 5-234.

[00005] [6] M. Lemańczyk, F. Parreau and D. Volný, Ergodic properties of real cocycles and pseudo-homogeneous Banach spaces, Trans. Amer. Math. Soc. 348 (1996), 4919-4938. | Zbl 0876.28021

[00006] [7] W. Parry, Topics in Ergodic Theory, Cambridge Univ. Press, Cambridge, 1981. | Zbl 0449.28016

[00007] [8] D. Pask, Skew products over the irrational rotation, Israel J. Math. 69 (1990), 65-74. | Zbl 0703.28009

[00008] [9] D. Pask, Ergodicity of certain cylinder flows, ibid. 76 (1991), 129-152. | Zbl 0764.28011

[00009] [10] K. Schmidt, Cocycles of Ergodic Transformation Groups, Macmillan Lectures in Math. 1, Delhi, 1977. | Zbl 0421.28017