The paper provides a proof of a combinatorial result which pertains to the characterization of the set of equations which are solvable in the composition monoid of all partial functions on an infinite set.
@article{bwmeta1.element.bwnjournal-article-fmv163i1p83bwm, author = {Wies\l aw Dziobiak and Andrzej Ehrenfeucht and Jacqueline Grace and Donald Silberger}, title = {A deceptive fact about functions}, journal = {Fundamenta Mathematicae}, volume = {163}, year = {2000}, pages = {83-93}, zbl = {0948.03047}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv163i1p83bwm} }
Dziobiak, Wiesław; Ehrenfeucht, Andrzej; Grace, Jacqueline; Silberger, Donald. A deceptive fact about functions. Fundamenta Mathematicae, Tome 163 (2000) pp. 83-93. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv163i1p83bwm/
[00000] [1] K. Rother, D. M. Silberger and M. E. Wilson, The reverse spelling of an FPrt-universal word in two letters, Algebra Universalis 36 (1996), 202-221. | Zbl 0905.20035
[00001] [2] D. M. Silberger, Universal words of complexity three, ibid. 11 (1980), 393-395. | Zbl 0533.20036