Chains and antichains in Boolean algebras
Losada, M. ; Todorčević, Stevo
Fundamenta Mathematicae, Tome 163 (2000), p. 55-76 / Harvested from The Polish Digital Mathematics Library

We give an affirmative answer to problem DJ from Fremlin’s list [8] which asks whether MAω1 implies that every uncountable Boolean algebra has an uncountable set of pairwise incomparable elements.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:212429
@article{bwmeta1.element.bwnjournal-article-fmv163i1p55bwm,
     author = {M. Losada and Stevo Todor\v cevi\'c},
     title = {Chains and antichains in Boolean algebras},
     journal = {Fundamenta Mathematicae},
     volume = {163},
     year = {2000},
     pages = {55-76},
     zbl = {0948.06010},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv163i1p55bwm}
}
Losada, M.; Todorčević, Stevo. Chains and antichains in Boolean algebras. Fundamenta Mathematicae, Tome 163 (2000) pp. 55-76. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv163i1p55bwm/

[00000] [1] U. Abraham and S. Shelah, Martin’s axiom does not imply that every two 1-dense sets of reals are isomorphic, Israel J. Math. 38 (1981), 161-176. | Zbl 0457.03048

[00001] [2] J. E. Baumgartner, Chains and antichains in P(ℕ), J. Symbolic Logic 45 (1980), 85-92. | Zbl 0437.03027

[00002] [3] J. E. Baumgartner, Applications of the proper forcing axiom, in: Handbook of Set-Theoretic Topology, Elsevier, Amsterdam, 1984, 913-959.

[00003] [4] J. E. Baumgartner and P. Komjáth, Boolean algebras in which every chain and antichain is countable, Fund. Math. 111 (1981), 125-133. | Zbl 0452.03044

[00004] [5] R. Bonnet and S. Shelah, Narrow Boolean algebras, Ann. Pure Appl. Logic 28 (1985), 1-12. | Zbl 0563.03035

[00005] [6] B. Dushnik and E. W. Miller, Partially ordered sets, Amer. J. Math. 63 (1941), 600-610. | Zbl 0025.31002

[00006] [7] D. Fremlin, Consequences of Martin's Axiom, Cambridge Univ. Press, 1984. | Zbl 0551.03033

[00007] [8] D. Fremlin, Problems, version of May, 1998.

[00008] [9] F. Galvin and B. Jónsson, Distributive sublattices of a free lattice, Canad. J. Math. 13 (1961), 265-272. | Zbl 0132.26202

[00009] [10] Dj. Kurepa, Transformations monotones des ensembles partiellement ordonnés, Rev. Cienc. (Lima) 437 (1943), 483-500.

[00010] [11] J. D. Monk, Cardinal Invariants on Boolean Algebras, Birkhäuser, Basel, 1996. | Zbl 0849.03038

[00011] [12] S. Shelah, Decomposing uncountable squares to countably many chains, J. Combin. Theory Ser. A 21 (1976), 110-114. | Zbl 0366.04009

[00012] [13] S. Shelah, On uncountable Boolean algebras with no uncountable pairwise comparable or incomparable sets of elements, Notre Dame J. Formal Logic 22 (1984), 301-308. | Zbl 0472.03042

[00013] [14] W. Sierpiński, Sur un problème de la théorie des relations, Ann. Scuola Norm. Sup. Pisa (2) 2 (1933), 285-287. | Zbl 0007.09702

[00014] [15] S. Todorčević, Trees and linearly ordered sets, in: Handbook of Set-Theoretic Topology, Elsevier, Amsterdam, 1984, 235-293.

[00015] [16] S. Todorčević, Remarks on chain conditions in products, Compositio Math. 55 (1985), 295-302. | Zbl 0583.54003

[00016] [17] S. Todorčević, Remarks on cellularity in products, ibid. 57 (1986), 357-372. | Zbl 0616.54002

[00017] [18] S. Todorčević, Partitioning pairs of countable ordinals, Acta Math. 159 (1987), 261-294. | Zbl 0658.03028

[00018] [19] S. Todorčević, Irredundant sets in Boolean algebras, Trans. Amer. Math. Soc. 339 (1993), 35-44. | Zbl 0781.06010