Misiurewicz maps unfold generically (even if they are critically non-finite)
van Strien, Sebastian
Fundamenta Mathematicae, Tome 163 (2000), p. 39-54 / Harvested from The Polish Digital Mathematics Library

We show that in normalized families of polynomial or rational maps, Misiurewicz maps (critically finite or infinite) unfold generically. For example, if fλ0 is critically finite with non-degenerate critical point c1(λ0),...,cn(λ0) such that fλ0ki(ci(λ0))=pi(λ0) are hyperbolic periodic points for i = 1,...,n, then  IV-1. Age impartible......................................................................................................................................................................... 31  λ(fλk1(c1(λ))-p1(λ),...,fλkd-2(cd-2(λ))-pd-2(λ)) is a local diffeomorphism for λ near λ0. For quadratic families this result was proved previously in DH using entirely different methods.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:212428
@article{bwmeta1.element.bwnjournal-article-fmv163i1p39bwm,
     author = {Sebastian van Strien},
     title = {Misiurewicz maps unfold generically (even if they are critically non-finite)},
     journal = {Fundamenta Mathematicae},
     volume = {163},
     year = {2000},
     pages = {39-54},
     zbl = {0965.37038},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv163i1p39bwm}
}
van Strien, Sebastian. Misiurewicz maps unfold generically (even if they are critically non-finite). Fundamenta Mathematicae, Tome 163 (2000) pp. 39-54. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv163i1p39bwm/

[00000] [AGLV] V. I. Arnol'd, V. V. Goryunov, O. V. Lyashko and V. A. Vasil'ev, Singularity Theory I, Springer, 1998.

[00001] [DH] A. Douady and J. H. Hubbard, On the dynamics of polynomial-like mappings, Ann. Sci. Ecole Norm. Sup. 18 (1985), 287-343. | Zbl 0587.30028

[00002] [Le] O. Lehto, Univalent Functions and Teichmüller Spaces, Grad. Texts in Math. 109, Springer, 1987.

[00003] [LV] O. Lehto and K. I. Virtanen, Quasiconformal Mappings in the Plane, Springer, 1973. | Zbl 0267.30016

[00004] [LS1] G. Levin and S. van Strien, Local connectivity of the Julia set of real polynomials, Ann. of Math. 147 (1998), 471-541. | Zbl 0941.37031

[00005] [LS2] G. Levin and S. van Strien, Total disconnectedness of the Julia set of real polynomials, Astérisque, to appear.

[00006] [Ma1] R. Mañé, Hyperbolicity, sinks and measure in one dimensional dynamics, Comm. Math. Phys. 100 (1985), 495-524. | Zbl 0583.58016

[00007] [Ma2] R. Mañé, On a theorem of Fatou, Bol. Soc. Brasil. Mat. 24 (1993), 1-11. | Zbl 0781.30023

[00008] [MSS] R. Mañé, P. Sad and D. Sullivan, On the dynamics of rational maps, Ann. Sci. Ecole Norm. Sup. 16 (1983), 193-217. | Zbl 0524.58025

[00009] [McM] C. McMullen, Complex Dynamics and Renormalization, Ann. of Math. Stud. 135, Princeton Univ. Press, 1994.

[00010] [MS] W. de Melo and S. van Strien, One-Dimensional Dynamics, Ergeb. Math. Grenzgeb. 25, Springer, 1993. | Zbl 0791.58003

[00011] [ST] M. Shishikura and L. Tan, Mañé's theorem, to appear. | Zbl 1062.37046

[00012] [TL] L. Tan, Similarity between the Mandelbrot set and Julia sets, Comm. Math. Phys. 134 (1990), 587-617. | Zbl 0726.58026

[00013] [Tsu] M. Tsujii, A simple proof for monotonicity of entropy in the quadratic family, Ergodic Theory Dynam. Systems, to appear.