We show that in normalized families of polynomial or rational maps, Misiurewicz maps (critically finite or infinite) unfold generically. For example, if is critically finite with non-degenerate critical point such that are hyperbolic periodic points for i = 1,...,n, then IV-1. Age impartible......................................................................................................................................................................... 31 is a local diffeomorphism for λ near . For quadratic families this result was proved previously in DH using entirely different methods.
@article{bwmeta1.element.bwnjournal-article-fmv163i1p39bwm, author = {Sebastian van Strien}, title = {Misiurewicz maps unfold generically (even if they are critically non-finite)}, journal = {Fundamenta Mathematicae}, volume = {163}, year = {2000}, pages = {39-54}, zbl = {0965.37038}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv163i1p39bwm} }
van Strien, Sebastian. Misiurewicz maps unfold generically (even if they are critically non-finite). Fundamenta Mathematicae, Tome 163 (2000) pp. 39-54. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv163i1p39bwm/
[00000] [AGLV] V. I. Arnol'd, V. V. Goryunov, O. V. Lyashko and V. A. Vasil'ev, Singularity Theory I, Springer, 1998.
[00001] [DH] A. Douady and J. H. Hubbard, On the dynamics of polynomial-like mappings, Ann. Sci. Ecole Norm. Sup. 18 (1985), 287-343. | Zbl 0587.30028
[00002] [Le] O. Lehto, Univalent Functions and Teichmüller Spaces, Grad. Texts in Math. 109, Springer, 1987.
[00003] [LV] O. Lehto and K. I. Virtanen, Quasiconformal Mappings in the Plane, Springer, 1973. | Zbl 0267.30016
[00004] [LS1] G. Levin and S. van Strien, Local connectivity of the Julia set of real polynomials, Ann. of Math. 147 (1998), 471-541. | Zbl 0941.37031
[00005] [LS2] G. Levin and S. van Strien, Total disconnectedness of the Julia set of real polynomials, Astérisque, to appear.
[00006] [Ma1] R. Mañé, Hyperbolicity, sinks and measure in one dimensional dynamics, Comm. Math. Phys. 100 (1985), 495-524. | Zbl 0583.58016
[00007] [Ma2] R. Mañé, On a theorem of Fatou, Bol. Soc. Brasil. Mat. 24 (1993), 1-11. | Zbl 0781.30023
[00008] [MSS] R. Mañé, P. Sad and D. Sullivan, On the dynamics of rational maps, Ann. Sci. Ecole Norm. Sup. 16 (1983), 193-217. | Zbl 0524.58025
[00009] [McM] C. McMullen, Complex Dynamics and Renormalization, Ann. of Math. Stud. 135, Princeton Univ. Press, 1994.
[00010] [MS] W. de Melo and S. van Strien, One-Dimensional Dynamics, Ergeb. Math. Grenzgeb. 25, Springer, 1993. | Zbl 0791.58003
[00011] [ST] M. Shishikura and L. Tan, Mañé's theorem, to appear. | Zbl 1062.37046
[00012] [TL] L. Tan, Similarity between the Mandelbrot set and Julia sets, Comm. Math. Phys. 134 (1990), 587-617. | Zbl 0726.58026
[00013] [Tsu] M. Tsujii, A simple proof for monotonicity of entropy in the quadratic family, Ergodic Theory Dynam. Systems, to appear.