We study the isomorphism relation of invariant Borel classes of countable mono-unary algebras and prove a strong dichotomy theorem.
@article{bwmeta1.element.bwnjournal-article-fmv163i1p25bwm, author = {Su Gao}, title = {A dichotomy theorem for mono-unary algebras}, journal = {Fundamenta Mathematicae}, volume = {163}, year = {2000}, pages = {25-37}, zbl = {0955.03049}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv163i1p25bwm} }
Gao, Su. A dichotomy theorem for mono-unary algebras. Fundamenta Mathematicae, Tome 163 (2000) pp. 25-37. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv163i1p25bwm/
[00000] [Ba] J. Barwise, Admissible Sets and Structures: an Approach to Definability Theory, Perspectives in Math. Logic, Springer, Berlin, 1975. | Zbl 0316.02047
[00001] [BK] H. Becker and A. S. Kechris, The Descriptive Set Theory of Polish Group Actions, London Math. Soc. Lecture Note Ser. 232, Cambridge Univ. Press, Cambridge, 1996. | Zbl 0949.54052
[00002] [FS] H. Friedman and L. Stanley, A Borel reducibility theory for classes of countable structures, J. Symbolic Logic 54 (1989), 894-914. | Zbl 0692.03022
[00003] [Ga] S. Gao, The isomorphism relation between countable models and definable equivalence relations, Ph.D. dissertation, UCLA, 1998.
[00004] [HKL] L. Harrington, A. S. Kechris and A. Louveau, A Glimm-Effros dichotomy for Borel equivalence relations, J. Amer. Math. Soc. 3 (1990), 903-928. | Zbl 0778.28011
[00005] [HK] G. Hjorth and A. S. Kechris, Analytic equivalence relations and Ulm-type classifications, J. Symbolic Logic 60 (1995), 1273-1300. | Zbl 0847.03023
[00006] [Ma] L. Marcus, The number of countable models of a theory of one unary function, Fund. Math. 58 (1980), 171-181. | Zbl 0363.02055
[00007] [Sa] R. Sami, Polish group actions and the Vaught Conjecture, Trans. Amer. Math. Soc. 341 (1994), 335-353. | Zbl 0795.03069
[00008] [St] J. R. Steel, On Vaught's Conjecture, in: Cabal Seminar 76-77, Lecture Notes in Math. 689, Springer, Berlin, 1978, 193-208.