If it looks and smells like the reals...
Tall, Franklin
Fundamenta Mathematicae, Tome 163 (2000), p. 1-11 / Harvested from The Polish Digital Mathematics Library

Given a topological space ⟨X,T⟩ ∈ M, an elementary submodel of set theory, we define XM to be X ∩ M with topology generated by U ∩ M:U ∈ T ∩ M. We prove that if XM is homeomorphic to ℝ, then X=XM. The same holds for arbitrary locally compact uncountable separable metric spaces, but is independent of ZFC if “local compactness” is omitted.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:212426
@article{bwmeta1.element.bwnjournal-article-fmv163i1p1bwm,
     author = {Franklin Tall},
     title = {If it looks and smells like the reals...},
     journal = {Fundamenta Mathematicae},
     volume = {163},
     year = {2000},
     pages = {1-11},
     zbl = {0943.54005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv163i1p1bwm}
}
Tall, Franklin. If it looks and smells like the reals.... Fundamenta Mathematicae, Tome 163 (2000) pp. 1-11. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv163i1p1bwm/

[00000] [AL] J. M. Aarts and D. J. Lutzer, Completeness properties designed for recognizing Baire spaces, Dissertationes Math. 116 (1974). | Zbl 0296.54027

[00001] [B] J. E. Baumgartner, Almost disjoint sets, the dense set problem and partition calculus, Ann. Math. Logic 10 (1976), 401-439. | Zbl 0339.04003

[00002] [D] A. Dow, An introduction to applications of elementary submodels in topology, Topology Proc. 13 (1988), 17-72. | Zbl 0696.03024

[00003] [E] R. Engelking, General Topology, Heldermann, Berlin, 1989.

[00004] [F] W. G. Fleissner, On λ-collectionwise Hausdorff spaces, Topology Proc. 2 (1977), 445-456.

[00005] [FMS] M. Foreman, M. Magidor and S. Shelah, Martin's Maximum, saturated ideals, and non-regular ultrafilters, I, Ann. of Math. 127 (1988), 1-47. | Zbl 0645.03028

[00006] [J] I. Juhász, Cardinal Functions in Topology-Ten Years Later, Math. Centre, Amsterdam, 1980. | Zbl 0479.54001

[00007] [Ju] L. R. Junqueira, Upwards preservation by elementary submodels, preprint. | Zbl 1002.54003

[00008] [JT] L. R. Junqueira and F. D. Tall, The topology of elementary submodels, Topology Appl. 82 (1998), 239-266. | Zbl 0903.54002

[00009] [JW] W. Just and M. Weese, Discovering Modern Set Theory, Volume II, Amer. Math. Soc., Providence, 1997. | Zbl 0887.03036

[00010] [K] A. Kanamori, The Higher Infinite, Springer, Berlin, 1994. | Zbl 0813.03034

[00011] [KT] K. Kunen and F. D. Tall, The real line in elementary submodels of set theory, J. Symbolic Logic, to appear. | Zbl 0960.03033

[00012] [R] J. Roitman, Basic S and L, in: Handbook of Set-Theoretic Topology, K. Kunen and J. E. Vaughan (eds.), North-Holland, Amsterdam, 1984, 295-326.

[00013] [S] J. H. Silver, The independence of Kurepa's conjecture and two-cardinal conjectures in model theory, in: Axiomatic Set Theory, D. S. Scott (ed.), Proc. Sympos. Pure Math. 13, Amer. Math. Soc., Providence, 1971, 383-390. | Zbl 0255.02068

[00014] [T] A. Tarski, Sur la décomposition des ensembles en sous-ensembles presque disjoints, Fund. Math. 12 (1928), 188-205. | Zbl 54.0092.02