Let X be an uncountable compact metrizable space of topological dimension zero. Given any a ∈[0,∞] there is a homeomorphism on X whose topological entropy is a.
@article{bwmeta1.element.bwnjournal-article-fmv162i3p233bwm, author = {Jozef Bobok and Ond\v rej Zindulka}, title = {Topological entropy on zero-dimensional spaces}, journal = {Fundamenta Mathematicae}, volume = {159}, year = {1999}, pages = {233-249}, zbl = {0946.54016}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv162i3p233bwm} }
Bobok, Jozef; Zindulka, Ondřej. Topological entropy on zero-dimensional spaces. Fundamenta Mathematicae, Tome 159 (1999) pp. 233-249. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv162i3p233bwm/
[00000] [1] L. Alsedà, J. Llibre, and M. Misiurewicz, Combinatorial Dynamics and Entropy in Dimension One, Adv. Ser. Nonlinear Dynam. 5, World Sci., Singapore, 1993. | Zbl 0843.58034
[00001] [2] R. Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc. 153 (1971), 401-414. | Zbl 0212.29201
[00002] [3] H. Cook, Continua which admit only the identity mapping onto nondegenerate subcontinua, Fund. Math. 60 (1967), 241-249. | Zbl 0158.41503
[00003] [4] M. Denker, C. Grillenberger, and K. Sigmund, Ergodic Theory on Compact Spaces, Lecture Notes in Math. 527, Springer, 1976. | Zbl 0328.28008
[00004] [5] R. Engelking, Dimension Theory, North-Holland, Amsterdam, 1978.
[00005] [6] R. Engelking, General Topology, Heldermann, Berlin, 1989.
[00006] [7] S. Mazurkiewicz et W. Sierpiński, Contribution à la topologie des ensembles dénombrables, Fund. Math. 1 (1920), 17-27. | Zbl 47.0176.01
[00007] [8] P. Walters, An Introduction to Ergodic Theory, Grad. Texts in Math. 79, Springer, New York, 1981.