Let f: (X,A) → (X,A) be a self map of a pair of compact polyhedra. It is known that f has at least N(f;X,A) fixed points on X. We give a sufficient and necessary condition for a finite set P (|P| = N(f;X,A)) to be the fixed point set of a map in the relative homotopy class of the given map f. As an application, a new lower bound for the number of fixed points of f on Cl(X-A) is given.
@article{bwmeta1.element.bwnjournal-article-fmv162i2p163bwm, author = {Xue Zhao}, title = {Minimal fixed point sets of relative maps}, journal = {Fundamenta Mathematicae}, volume = {159}, year = {1999}, pages = {163-180}, zbl = {0948.55003}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv162i2p163bwm} }
Zhao, Xue. Minimal fixed point sets of relative maps. Fundamenta Mathematicae, Tome 159 (1999) pp. 163-180. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv162i2p163bwm/
[00000] [1] R. F. Brown, The Lefschetz Fixed Point Theorem, Scott and Foresman, Glenview, IL, 1971. | Zbl 0216.19601
[00001] [2] H P. Hall, On representatives of subsets, J. London Math. Soc. 10 (1935), 26-30. | Zbl 0010.34503
[00002] [3] B. Jiang, On the least number of fixed points, Amer. J. Math. 102 (1980), 749-763. | Zbl 0455.55001
[00003] [4] B. Jiang, Lectures on Nielsen Fixed Point Theory, Contemp. Math. 14, Amer. Math. Soc., Providence, RI, 1983.
[00004] [5] H. Schirmer, A relative Nielsen number, Pacific J. Math. 122 (1986), 459-473. | Zbl 0553.55001
[00005] [6] H. Schirmer, On the location of fixed points on pairs of spaces, Topology Appl. 30 (1988), 253-266. | Zbl 0664.55003
[00006] [7] W P. Wolfenden, Fixed point sets of deformations of polyhedra with local cut points, Trans. Amer. Math. Soc. 350 (1998), 2457-2471. | Zbl 0897.54015
[00007] [8] X. Z. Zhao, A relative Nielsen number for the complement, in: Topological Fixed Point Theory and Applications, B. Jiang (ed.), Lecture Notes in Math. 1411, Springer, Berlin, 1989, 189-199.
[00008] [9] X. Z. Zhao, Basic relative Nielsen numbers, in: Topology-Hawaii, World Sci., Singapore, 1992, 215-222. | Zbl 1039.55503