Open maps between Knaster continua
Eberhart, Carl ; Fugate, J. ; Schumann, Shannon
Fundamenta Mathematicae, Tome 159 (1999), p. 119-148 / Harvested from The Polish Digital Mathematics Library

We investigate the set of open maps from one Knaster continuum to another. A structure theorem for the semigroup of open induced maps on a Knaster continuum is obtained. Homeomorphisms which are not induced are constructed, and it is shown that the induced open maps are dense in the space of open maps between two Knaster continua. Results about the structure of the semigroup of open maps on a Knaster continuum are obtained and two questions about the structure are posed.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:212415
@article{bwmeta1.element.bwnjournal-article-fmv162i2p119bwm,
     author = {Carl Eberhart and J. Fugate and Shannon Schumann},
     title = {Open maps between Knaster continua},
     journal = {Fundamenta Mathematicae},
     volume = {159},
     year = {1999},
     pages = {119-148},
     zbl = {0942.54032},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv162i2p119bwm}
}
Eberhart, Carl; Fugate, J.; Schumann, Shannon. Open maps between Knaster continua. Fundamenta Mathematicae, Tome 159 (1999) pp. 119-148. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv162i2p119bwm/

[00000] [1] R. D. Anderson and G. Choquet, A plane continuum no two of whose nondegenerate subcontinua are homeomorphic: an application of inverse limits, Proc. Amer. Math. Soc. 10 (1959), 347-353. | Zbl 0093.36501

[00001] [2] G. Birkhoff, Lattice Theory, Amer. Math. Soc. Colloq. Publ. 25 (revised ed.), Amer. Math. Soc., New York, 1948.

[00002] [3] A. H. Clifford and G. B. Preston, The Algebraic Theory of Semigroups, Vol. 1, Math. Surveys 7, Amer. Math. Soc., 1961. | Zbl 0111.03403

[00003] [4] A. H. Clifford and G. B. Preston, The Algebraic Theory of Semigroups, Vol. 2, Math. Surveys 7, Amer. Math. Soc., 1967. | Zbl 0178.01203

[00004] [5] J. F. Davis, Confluent mappings on [0,1] and inverse limits, Topology Proc. 15 (1990), 1-9. | Zbl 0770.54012

[00005] [6] W. Dębski, On topological types of the simplest indecomposable continua, Colloq. Math. 49 (1985), 203-211. | Zbl 0591.54026

[00006] [7] W. T. Ingram, Periodicity and indecomposability, Proc. Amer. Math. Soc. 123 (1995), 1907-1916. | Zbl 0851.54036

[00007] [8] K. Kuratowski, Topology, Academic Press, New York, 1968.

[00008] [9] S. B. Nadler, Jr., Continuum Theory, Dekker, 1992.

[00009] [10] J. W. Rogers, On mapping indecomposable continua onto certain chainable indecomposable continua, Proc. Amer. Math. Soc. 25 (1969), 449-456. | Zbl 0194.54804

[00010] [11] W. T. Watkins, Homeomorphic classification of certain inverse limit spaces with open bonding maps, Pacific J. Math. 103 (1982), 589-601. | Zbl 0451.54027

[00011] [12] G. T. Whyburn, Analytic Topology, Amer. Math. Soc. Colloq. Publ. 28, 1963.