In a countable superstable NDOP theory, the existence of a rigid -saturated model implies the existence of rigid -saturated models of power λ for every .
@article{bwmeta1.element.bwnjournal-article-fmv162i1p37bwm, author = {Ziv Shami and Saharon Shelah}, title = {Rigid $\_e$ -saturated models of superstable theories}, journal = {Fundamenta Mathematicae}, volume = {159}, year = {1999}, pages = {37-46}, zbl = {0945.03050}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv162i1p37bwm} }
Shami, Ziv; Shelah, Saharon. Rigid $ℵ_ε$ -saturated models of superstable theories. Fundamenta Mathematicae, Tome 159 (1999) pp. 37-46. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv162i1p37bwm/
[00000] [B] J. T. Baldwin, Fundamentals of Stability Theory, Springer, 1988.
[00001] [Sh-401] S. Shelah, Characterizing an -saturated model of superstable NDOP theories by its (d.q)-theory, preprint, 1992.
[00002] [Sh-C] S. Shelah, Classification Theory and the Number of Non-Isomorphic Models, rev. ed., North-Holland, Amsterdam, 1990.