Teardrops are generalizations of open mapping cylinders. We prove that the teardrop of a stratified approximate fibration X → Y × ℝ with X and Y homotopically stratified spaces is itself a homotopically stratified space (under mild hypothesis). This is applied to manifold stratified approximate fibrations between manifold stratified spaces in order to establish the realization part of a previously announced tubular neighborhood theory.
@article{bwmeta1.element.bwnjournal-article-fmv161i3p305bwm, author = {Bruce Hughes}, title = {Stratifications of teardrops}, journal = {Fundamenta Mathematicae}, volume = {159}, year = {1999}, pages = {305-324}, zbl = {0942.57021}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv161i3p305bwm} }
Hughes, Bruce. Stratifications of teardrops. Fundamenta Mathematicae, Tome 159 (1999) pp. 305-324. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv161i3p305bwm/
[00000] [1] A. Beshears, G-isovariant structure sets and stratified structure sets, Ph.D. thesis, Vanderbilt Univ., 1997.
[00001] [2] T. A. Chapman, Approximation results in topological manifolds, Mem. Amer. Math. Soc. 251 (1981). | Zbl 0478.57009
[00002] [3] D. Coram and P. Duvall, Approximate fibrations, Rocky Mountain J. Math. 7 (1977), 275-288. | Zbl 0367.55019
[00003] [4] R. D. Edwards, TOP regular neighborhoods, handwritten manuscript, 1973.
[00004] [5] B. Hughes, Approximate fibrations on topological manifolds, Michigan Math. J. 32 (1985), 167-183. | Zbl 0575.55014
[00005] [6] B. Hughes, Geometric topology of stratified spaces, Electron. Res. Announc. Amer. Math. Soc. 2 (1996), 73-81. | Zbl 0866.57018
[00006] [7] B. Hughes, Stratified path spaces and fibrations, Proc. Roy. Soc. Edinburgh Sect. A 129 (1999), 351-384. | Zbl 0923.55007
[00007] [8] B. Hughes, Stratifications of mapping cylinders, Topology Appl. 94 (1999), 127-145. | Zbl 0928.57027
[00008] [9] B. Hughes, The geometric topology of stratified spaces, in preparation. | Zbl 0866.57018
[00009] [10] B. Hughes and A. Ranicki, Ends of Complexes, Cambridge Tracts in Math. 123, Cambridge Univ. Press, Cambridge, 1996. | Zbl 0876.57001
[00010] [11] B. Hughes, L. Taylor, S. Weinberger and B. Williams, Neighborhoods in stratified spaces with two strata, Topology, to appear. | Zbl 0954.57008
[00011] [12] B. Hughes, L. Taylor and B. Williams, Bundle theories for topological manifolds, Trans. Amer Math. Soc. 319 (1990), 1-65. | Zbl 0704.57012
[00012] [13] B. Hughes, L. Taylor and B. Williams, Manifold approximate fibrations are approximately bundles, Forum Math. 3 (1991), 309-325. | Zbl 0728.55009
[00013] [14] B. Hughes and S. Weinberger, Surgery and stratified spaces, preprint, http://xxx.lanl.gov/abs/math.GT/9807156. | Zbl 0982.57009
[00014] [15] F. Quinn, Homotopically stratified sets, J. Amer. Math. Soc. 1 (1988), 441-499. | Zbl 0655.57010
[00015] [16] C. Rourke and B. Sanderson, An embedding without a normal bundle, Invent. Math. 3 (1967), 293-299. | Zbl 0168.44602
[00016] [17] L. Siebenmann, The obstruction to finding a boundary of an open manifold of dimension greater than five, Ph.D. thesis, Princeton Univ., 1965.