Let K be a compact connected subset of cc, not reduced to a point, and F a univalent map in a neighborhood of K such that F(K) = K. This work presents a study and a classification of the dynamics of F in a neighborhood of K. When ℂ K has one or two connected components, it is proved that there is a natural rotation number associated with the dynamics. If this rotation number is irrational, the situation is close to that of “degenerate Siegel disks” or “degenerate Herman rings” studied by R. Pérez-Marco (in particular, any point of K is recurrent). In any other case (that is, if this number is rational or if ℂ K has more than two connected components), the situation is essentially trivial: the dynamics is of Morse-Smale type, and a complete description and classification modulo analytic conjugacy is given.
@article{bwmeta1.element.bwnjournal-article-fmv161i3p241bwm, author = {Emmanuel Risler}, title = {Compacts connexes invariants par une application univalente}, journal = {Fundamenta Mathematicae}, volume = {159}, year = {1999}, pages = {241-277}, language = {fr}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv161i3p241bwm} }
Risler, Emmanuel. Compacts connexes invariants par une application univalente. Fundamenta Mathematicae, Tome 159 (1999) pp. 241-277. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv161i3p241bwm/
[00000] [B] G. D. Birkhoff, Sur quelques courbes fermées remarquables, Bull. Soc. Math. France 60 (1932), 1-26. | Zbl 58.0633.01
[00001] [C,G] L. Carleson and T. W. Gamelin, Complex Dynamics, Springer, 1993. | Zbl 0782.30022
[00002] [C,L] M. L. Cartwright and J. C. Littlewood, Some fixed point theorems, Ann. of Math. 54 (1951), 1-37. | Zbl 0058.38604
[00003] [E] J. Ecalle, Théorie des invariants holomorphes, Publ. Math. Orsay 67, 7409 (1974). | Zbl 0285.26010
[00004] [H1] M. R. Herman, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Publ. Math. I.H.E.S. 49 (1979), 5-233.
[00005] [H2] M. R. Herman, Are there critical points on the boundaries of singular domains?, Comm. Math. Phys. 99 (1985), 593-612. | Zbl 0587.30040
[00006] [L] P. Le Calvez, Propriétés des attracteurs de Birkhoff, Ergodic Theory Dynam. Systems 8 (1987), 241-310. | Zbl 0657.58009
[00007] [M] J. Mather, Commutators of diffeomorphisms, Comm. Math. Helv. 48 (1973), 195-233.
[00008] [P,Y] J. Palis and J.-C. Yoccoz, Differentiable conjugacies of Morse-Smale diffeomorphisms, Bol. Soc. Brasil. Mat. 20 (1990), 25-48. | Zbl 0726.58027
[00009] [PM1] R. Pérez-Marco, Fixed points and circle maps, Acta Math. 179 (1997), 243-294. | Zbl 0914.58027
[00010] [PM2] R. Pérez-Marco, Topology of Julia sets and hedgehogs, preprint, Université de Paris-Sud, 94-48, 1994.
[00011] [PM3] R. Pérez-Marco, Hedgehog's dynamics, preprint.
[00012] [PM4] R. Pérez-Marco, Classification dynamique des continua pleins invariants par un difféomorphisme holomorphe, manuscrit, 1996.
[00013] [Po] C. Pommerenke, Boundary Behaviour of Conformal Maps, Springer, 1992. | Zbl 0762.30001
[00014] [V] S. M. Voronin, Analytic classification of germs of conformal mappings (ℂ,0) → (ℂ,0) with identity linear part, Funktsional. Anal. i Prilozhen. 15 (1981), no. 1, 1-17 (in Russian).
[00015] [Y] J.-C. Yoccoz, Conjugaison des difféomorphismes analytiques du cercle, manuscrit, 1988.