High-dimensional knots corresponding to the fractional Fibonacci groups
Szczepański, Andrzej ; Vesnin, Andreĭ
Fundamenta Mathematicae, Tome 159 (1999), p. 235-240 / Harvested from The Polish Digital Mathematics Library

We prove that the natural HNN-extensions of the fractional Fibonacci groups are the fundamental groups of high-dimensional knot complements. We also give some characterization and interpretation of these knots. In particular we show that some of them are 2-knots.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:212403
@article{bwmeta1.element.bwnjournal-article-fmv161i1p235bwm,
     author = {Andrzej Szczepa\'nski and Andre\u\i\ Vesnin},
     title = {High-dimensional knots corresponding to the fractional Fibonacci groups},
     journal = {Fundamenta Mathematicae},
     volume = {159},
     year = {1999},
     pages = {235-240},
     zbl = {0942.57022},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv161i1p235bwm}
}
Szczepański, Andrzej; Vesnin, Andreĭ. High-dimensional knots corresponding to the fractional Fibonacci groups. Fundamenta Mathematicae, Tome 159 (1999) pp. 235-240. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv161i1p235bwm/

[00000] [1] K. Brown, Cohomology of Groups, Springer, New York, 1982. | Zbl 0584.20036

[00001] [2] H. Helling, A. Kim and J. Mennicke, A geometric study of Fibonacci groups, J. Lie Theory 8 (1998), 1-23. | Zbl 0896.20026

[00002] [3] J. Hillman, Abelian normal subgroups of two-knot groups, Comment. Math. Helv. 61 (1986), 122-148. | Zbl 0611.57015

[00003] [4] J. Hillman, 2-Knots and Their Groups, Austral. Math. Soc. Lecture Ser. 5, 1989.

[00004] [5] D. Johnson, Presentation of Groups, London Math. Soc. Lecture Note Ser. 22, Cambridge Univ. Press, 1976.

[00005] [6] A. Kim and A. Vesnin, A topological study of the fractional Fibonacci groups, Siberian Math. J. 39 (1998).

[00006] [7] C. MacLachlan, Generalizations of Fibonacci numbers, groups and manifolds, in: Combinatorial and Geometric Group Theory (Edinburgh, 1993), A. J. Duncan, N. D. Gilbert and J. Howie (eds.), London Math. Soc. Lecture Note Ser. 204, Cambridge Univ. Press, 1995, 233-238. | Zbl 0851.20026

[00007] [8] W. Magnus, A. Karras and D. Solitar, Combinatorial Group Theory, Wiley Interscience, New York, 1966.

[00008] [9] S. Plotnik, Equivariant intersection forms, knots in S4, and rotations in 2-spheres, Trans. Amer. Math. Soc. 296 (1986), 543-575.

[00009] [10] D. Rolfsen, Knots and Links, Publish or Perish, Berkeley, CA, 1976.

[00010] [11] A. Szczepański, High dimensional knot groups and HNN extensions of the Fibonacci groups, J. Knot Theory Ramifications 7 (1998), 503-508. | Zbl 0908.57005

[00011] [12] C. Zeeman, Twisting spun knots, Trans. Amer. Math. Soc. 115 (1965), 471-495. | Zbl 0134.42902