Postnikov invariants of H-spaces
Arlettaz, Dominique ; Pointet-Tischler, Nicole
Fundamenta Mathematicae, Tome 159 (1999), p. 17-35 / Harvested from The Polish Digital Mathematics Library

It is known that the order of all Postnikov k-invariants of an H-space of finite type is finite. This paper establishes the finiteness of the order of the k-invariants km+1(X) of X in dimensions m ≤ 2n if X is an (n-1)-connected H-space which is not necessarily of finite type (n ≥ 1). Similar results hold more generally for higher k-invariants if X is an iterated loop space. Moreover, we provide in all cases explicit universal upper bounds for the order of the k-invariants of X.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:212399
@article{bwmeta1.element.bwnjournal-article-fmv161i1p17bwm,
     author = {Dominique Arlettaz and Nicole Pointet-Tischler},
     title = {Postnikov invariants of H-spaces},
     journal = {Fundamenta Mathematicae},
     volume = {159},
     year = {1999},
     pages = {17-35},
     zbl = {0947.55019},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv161i1p17bwm}
}
Arlettaz, Dominique; Pointet-Tischler, Nicole. Postnikov invariants of H-spaces. Fundamenta Mathematicae, Tome 159 (1999) pp. 17-35. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv161i1p17bwm/

[00000] [AC] M. Arkowitz and C. Curjel, The Hurewicz homomorphism and finite homotopy invariants, Trans. Amer. Math. Soc. 110 (1964), 538-551. | Zbl 0132.19203

[00001] [A1] D. Arlettaz, On the homology of the special linear group over a number field, Comment. Math. Helv. 61 (1986), 556-564. | Zbl 0621.20028

[00002] [A2] D. Arlettaz, On the k-invariants of iterated loop spaces, Proc. Roy. Soc. Edinburgh Sect. A 110 (1988), 343-350. | Zbl 0665.55012

[00003] [A3] D. Arlettaz, The first k-invariant of a double loop space is trivial, Arch. Math. (Basel) 54 (1990), 84-92. | Zbl 0672.55010

[00004] [A4] D. Arlettaz, Universal bounds for the exponent of stable homotopy groups, Topology Appl. 38 (1991), 255-261. | Zbl 0718.55010

[00005] [A5] D. Arlettaz, Exponents for extraordinary homology groups, Comment. Math. Helv. 68 (1993), 653-672. | Zbl 0968.55003

[00006] [C] H. Cartan, Algèbres d'Eilenberg-MacLane et homotopie, Séminaire H. Cartan Ecole Norm. Sup. (1954/1955), exp. 11; see also: Oeuvres, Vol. III, Springer, 1979, 1374-1394.

[00007] [J] I. M. James, Reduced product spaces, Ann. of Math. (2) 62 (1955), 170-197.

[00008] [P1] N. Pointet-Tischler, Invariants de Postnikov des espaces de lacets, thèse, Université de Lausanne, 1996.

[00009] [P2] N. Pointet-Tischler, La suspension cohomologique des espaces d'Eilenberg-MacLane, C. R. Acad. Sci. Paris Sér. I 325 (1997), 1113-1116. | Zbl 0897.55007

[00010] [Sm] L. Smith, On the relation between spherical and primitive homology classes in topological groups, Topology 8 (1969), 69-88.

[00011] [So] C. Soulé, Opérations en K-théorie algébrique, Canad. J. Math. 37 (1985), 488-550. | Zbl 0575.14015

[00012] [T] R. Thom, L'homologie des espaces fonctionnels, in: Colloque de topologie algébrique (Louvain, 1956), Masson, 1957, 29-39.

[00013] [WG1] G. Whitehead, On spaces with vanishing low-dimensional homotopy groups, Proc. Nat. Acad. Sci. U.S.A. 34 (1948), 207-211. | Zbl 0031.28601

[00014] [WG2] G. Whitehead, Elements of Homotopy Theory, Grad. Texts in Math. 61, Springer, 1978.

[00015] [WH] J. H. C. Whitehead, A certain exact sequence, Ann. of Math. (2) 52 (1950), 51-110.