Splitting obstructions and properties of objects in the Nil categories
Koźniewski, Tadeusz
Fundamenta Mathematicae, Tome 159 (1999), p. 155-165 / Harvested from The Polish Digital Mathematics Library

We show that the objects of Bass-Farrell categories which represent 0 in the corresponding Nil groups are precisely those which are stably triangular. This extends to Waldhausen's Nil group of the amalgamated free product with index 2 factors. Applications include a description of Cappell's special UNil group and reformulations of those splitting and fibering theorems which use the Nil groups.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:212397
@article{bwmeta1.element.bwnjournal-article-fmv161i1p155bwm,
     author = {Tadeusz Ko\'zniewski},
     title = {Splitting obstructions and properties of objects in the Nil categories},
     journal = {Fundamenta Mathematicae},
     volume = {159},
     year = {1999},
     pages = {155-165},
     zbl = {0938.19001},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv161i1p155bwm}
}
Koźniewski, Tadeusz. Splitting obstructions and properties of objects in the Nil categories. Fundamenta Mathematicae, Tome 159 (1999) pp. 155-165. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv161i1p155bwm/

[00000] [Bd] B. Badzioch, K1 of twisted polynomial rings, K-Theory 16 (1999), 29-34.

[00001] [Bs] H. Bass, Algebraic K-Theory, Benjamin, New York, 1968.

[00002] [C1] S. Cappell, Unitary nilpotent groups and Hermitian K-theory, Bull. Amer. Math. Soc. 80 (1974), 1117-1122. | Zbl 0322.57020

[00003] [C2] S. Cappell, Manifolds with fundamental group a generalized free product, ibid. 80 (1974), 1193-1198. | Zbl 0341.57007

[00004] [C3] S. Cappell, A splitting theorem for manifolds, Invent. Math. 33 (1976), 69-170. | Zbl 0348.57017

[00005] [CK] F. Connolly and T. Koźniewski, Nil groups in K-theory and surgery theory, Forum Math. 7 (1995), 45-76. | Zbl 0844.57036

[00006] [F] F. T. Farrell, The obstruction to fibering a manifold over a circle, Indiana Univ. Math. J. 21 (1971), 315-346. | Zbl 0242.57016

[00007] [FH1] F. T. Farrell and W. C. Hsiang, A formula for K1Rα[T], in: Proc. Sympos. Pure Math. 17, Amer. Math. Soc., 1970, 192-218.

[00008] [FH2] F. T. Farrell and W. C. Hsiang, Manifolds with π1=G×αT, Amer. J. Math. 95 (1973), 813-848.

[00009] [KS] S. Kwasik and R. Schultz, Unitary nilpotent groups and the stability of pseudoisotopies, Duke Math. J. 71 (1993), 871-887. | Zbl 0804.57009

[00010] [R] A. Ranicki, Lower K- and L-Theory, Cambridge Univ. Press, 1992.

[00011] [W1] F. Waldhausen, Whitehead groups of generalized free products, preprint, 1969.

[00012] [W2] F. Waldhausen, Algebraic K-theory of generalized free products, Ann. of Math. 108 (1978), 135-256. | Zbl 0407.18009