We show that the objects of Bass-Farrell categories which represent 0 in the corresponding Nil groups are precisely those which are stably triangular. This extends to Waldhausen's Nil group of the amalgamated free product with index 2 factors. Applications include a description of Cappell's special UNil group and reformulations of those splitting and fibering theorems which use the Nil groups.
@article{bwmeta1.element.bwnjournal-article-fmv161i1p155bwm, author = {Tadeusz Ko\'zniewski}, title = {Splitting obstructions and properties of objects in the Nil categories}, journal = {Fundamenta Mathematicae}, volume = {159}, year = {1999}, pages = {155-165}, zbl = {0938.19001}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv161i1p155bwm} }
Koźniewski, Tadeusz. Splitting obstructions and properties of objects in the Nil categories. Fundamenta Mathematicae, Tome 159 (1999) pp. 155-165. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv161i1p155bwm/
[00000] [Bd] B. Badzioch, of twisted polynomial rings, K-Theory 16 (1999), 29-34.
[00001] [Bs] H. Bass, Algebraic K-Theory, Benjamin, New York, 1968.
[00002] [C1] S. Cappell, Unitary nilpotent groups and Hermitian K-theory, Bull. Amer. Math. Soc. 80 (1974), 1117-1122. | Zbl 0322.57020
[00003] [C2] S. Cappell, Manifolds with fundamental group a generalized free product, ibid. 80 (1974), 1193-1198. | Zbl 0341.57007
[00004] [C3] S. Cappell, A splitting theorem for manifolds, Invent. Math. 33 (1976), 69-170. | Zbl 0348.57017
[00005] [CK] F. Connolly and T. Koźniewski, Nil groups in K-theory and surgery theory, Forum Math. 7 (1995), 45-76. | Zbl 0844.57036
[00006] [F] F. T. Farrell, The obstruction to fibering a manifold over a circle, Indiana Univ. Math. J. 21 (1971), 315-346. | Zbl 0242.57016
[00007] [FH1] F. T. Farrell and W. C. Hsiang, A formula for , in: Proc. Sympos. Pure Math. 17, Amer. Math. Soc., 1970, 192-218.
[00008] [FH2] F. T. Farrell and W. C. Hsiang, Manifolds with , Amer. J. Math. 95 (1973), 813-848.
[00009] [KS] S. Kwasik and R. Schultz, Unitary nilpotent groups and the stability of pseudoisotopies, Duke Math. J. 71 (1993), 871-887. | Zbl 0804.57009
[00010] [R] A. Ranicki, Lower K- and L-Theory, Cambridge Univ. Press, 1992.
[00011] [W1] F. Waldhausen, Whitehead groups of generalized free products, preprint, 1969.
[00012] [W2] F. Waldhausen, Algebraic K-theory of generalized free products, Ann. of Math. 108 (1978), 135-256. | Zbl 0407.18009