Using Hausmann and Vogel's homology sphere bundle interpretation of algebraic K-theory, we construct K-theory invariants by a theory of characteristic classes for flat bundles. It is shown that the Borel classes are detected this way, as well as the rational K-theory of integer group rings of finite groups.
@article{bwmeta1.element.bwnjournal-article-fmv161i1p137bwm, author = {Bj\o rn Jahren}, title = {K-theory, flat bundles and the Borel classes}, journal = {Fundamenta Mathematicae}, volume = {159}, year = {1999}, pages = {137-153}, zbl = {0940.19001}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv161i1p137bwm} }
Jahren, Bjørn. K-theory, flat bundles and the Borel classes. Fundamenta Mathematicae, Tome 159 (1999) pp. 137-153. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv161i1p137bwm/
[00000] [1] A. J. Berrick, Characterization of plus-constructive fibrations, Adv. Math. 48 (1983), 172-176. | Zbl 0531.55012
[00001] [2] A. Borel, Stable real cohomology of arithmetic groups, Ann. Sci. École Norm. Sup. (4) 7 (1974), 235-272. | Zbl 0316.57026
[00002] [3] A. Borel, Cohomologie de et valeurs de fonctions zêta aux points entiers, Ann. Scuola Norm. Sup. Pisa 4 (1977), 613-636. | Zbl 0382.57027
[00003] [4] J.-C. Hausmann, Homology sphere bordism and Quillen plus construction, in: Algebraic K-Theory (Evanston, 1976), Lecture Notes in Math. 551, Springer, 1976, 170-181.
[00004] [5] J.-C. Hausmann and P. Vogel, The plus construction and lifting maps from manifolds, in: Proc. Sympos. Pure Math. 32, Amer. Math. Soc., 1978, 67-76.
[00005] [6] B. Jahren, On the rational K-theory of group rings of finite groups, preprint, Oslo, 1993.
[00006] [7] J. D. S. Jones and B. W. Westbury, Algebraic K-theory, homology spheres, and the η-invariant, Warwick preprint 4/1993.
[00007] [8] F. W. Kamber and Ph. Tondeur, Foliated Bundles and Characteristic Classes, Lecture Notes in Math. 493, Springer, 1975.
[00008] [9] M. Karoubi, Homologie cyclique et K-théorie, Astérisque 149 (1987).
[00009] [10] M. A. Kervaire, Smooth homology spheres and their fundamental groups, Trans. Amer. Math. Soc. 144 (1969), 67-72. | Zbl 0187.20401
[00010] [11] S. Lichtenbaum, Values of zeta functions, étale cohomology, and algebraic K-theory, in: Algebraic K-Theory II, Lecture Notes in Math. 342, Springer, 1973, 489-501. | Zbl 0284.12005