The cobordism of Real manifolds
Hu, Po
Fundamenta Mathematicae, Tome 159 (1999), p. 119-136 / Harvested from The Polish Digital Mathematics Library

We calculate completely the Real cobordism groups, introduced by Landweber and Fujii, in terms of homotopy groups of known spectra.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:212395
@article{bwmeta1.element.bwnjournal-article-fmv161i1p119bwm,
     author = {Po Hu},
     title = {The cobordism of Real manifolds},
     journal = {Fundamenta Mathematicae},
     volume = {159},
     year = {1999},
     pages = {119-136},
     zbl = {0939.55005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv161i1p119bwm}
}
Hu, Po. The cobordism of Real manifolds. Fundamenta Mathematicae, Tome 159 (1999) pp. 119-136. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv161i1p119bwm/

[00000] [1] S. Araki, Orientations in τ-cohomology theories, Japan J. Math. 5 (1979), 403-430. | Zbl 0443.55003

[00001] [2] S. Araki and K. Iriye, Equivariant stable homotopy groups of spheres with involutions, I, Osaka J. Math. 19 (1982), 1-55. | Zbl 0488.55012

[00002] [3] S. Araki and M. Murayama, τ-cohomology theories, Japan J. Math. 4 (1978), 363-416.

[00003] [4] M. F. Atiyah, K-theory and Reality, Quart. J. Math. Oxford (2) 17 (1966), 367-386. | Zbl 0146.19101

[00004] [5] M. F. Atiyah, R. Bott and A. Shapiro, Clifford modules, Topology 3 (1964), suppl. 1, 3-38.

[00005] [6] M. F. Atiyah and G. B. Segal, Equivariant K-theory and completion, J. Differential Geom. 3 (1969) 1-18.

[00006] [7] P. E. Conner and E. E. Floyd, Differentiable Periodic Maps, Academic Press, New York, 1964. | Zbl 0125.40103

[00007] [8] S. R. Costenoble and S. Waner, G-transversality revisited, Proc. Amer. Math. Soc. 116 (1992), 535-546.

[00008] [9] T. tom Dieck, Bordisms of G-manifolds and integrality theorems, Topology 9 (1970), 345-358. | Zbl 0209.27504

[00009] [10] M. Fujii, Cobordism theory with reality, Math. J. Okayama Univ. 18 (1976), 171-188. | Zbl 0334.55017

[00010] [11] M. Fujii, On the relation of real cobordism to KR-theory, ibid. 19 (1977), 147-158. | Zbl 0375.55004

[00011] [12] M. Fujii, Bordism theory with reality and duality theorem of Poincaré type, ibid. 30 (1988), 151-160. | Zbl 0702.57016

[00012] [13] I. Kriz, A Real analogue of the Adams-Novikov spectral sequence, in preparation. | Zbl 0967.55010

[00013] [14] P. S. Landweber, Fixed point free conjugations on complex manifolds, Ann. of Math. (2) 86 (1967), 491-502. | Zbl 0179.28503

[00014] [15] P. S. Landweber, Conjugations on complex manifolds and equivariant homotopy of MU, Bull. Amer. Math. Soc. 74 (1968), 271-274. | Zbl 0181.26801

[00015] [16] L. G. Lewis, J. P. May and M. Steinberger, Equivariant Stable Homotopy Theory, with contributions by J. E. McClure, Lecture Notes in Math. 1213, Springer, Berlin, 1986.

[00016] [17] J. Milnor, Differentiable Topology, Princeton Univ. Press, 1958.

[00017] [18] J. Milnor and J. W. Stasheff, Characteristic Classes, Princeton Univ. Press and Univ. of Tokyo Press, 1974.

[00018] [19] R. E. Stong, Notes on Cobordism Theory, Princeton Univ. Press, 1968. | Zbl 0181.26604

[00019] [20] A. G. Wasserman, Equivariant differential topology, Topology 8 (1969), 127-150. | Zbl 0215.24702