On absolutely divergent series
Fuchino, Sakaé ; Mildenberger, Heike ; Shelah, Saharon ; Vojtáš, Peter
Fundamenta Mathematicae, Tome 159 (1999), p. 255-268 / Harvested from The Polish Digital Mathematics Library

We show that in the 2-stage countable support iteration of Mathias forcing over a model of CH the complete Boolean algebra generated by absolutely divergent series under eventual dominance is not isomorphic to the completion of P(ω)/fin. This complements Vojtáš’ result that under cf()= the two algebras are isomorphic [15].

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:212392
@article{bwmeta1.element.bwnjournal-article-fmv160i3p255bwm,
     author = {Saka\'e Fuchino and Heike Mildenberger and Saharon Shelah and Peter Vojt\'a\v s},
     title = {On absolutely divergent series},
     journal = {Fundamenta Mathematicae},
     volume = {159},
     year = {1999},
     pages = {255-268},
     zbl = {0933.03065},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv160i3p255bwm}
}
Fuchino, Sakaé; Mildenberger, Heike; Shelah, Saharon; Vojtáš, Peter. On absolutely divergent series. Fundamenta Mathematicae, Tome 159 (1999) pp. 255-268. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv160i3p255bwm/

[00000] [1] N. Alon, J. Spencer and P. Erdős, The Probabilistic Method, Wiley, 1992.

[00001] [2] B. Balcar, J. Pelant and P. Simon, The space of ultrafilters on N covered by nowhere dense sets, Fund. Math. 110 (1980), 11-24. | Zbl 0568.54004

[00002] [3] T. Bartoszyński, Additivity of measure implies additivity of category, Trans. Amer. Math. Soc. 281 (1984), 209-213. | Zbl 0538.03042

[00003] [4] T. Bartoszyński and M. Scheepers, Remarks on small sets related to trigonometric series, Topology Appl. 64 (1995), 133-140. | Zbl 0828.42004

[00004] [5] J. Baumgartner, Iterated forcing, in: A. Mathias (ed.), Surveys in Set Theory, London Math. Soc. Lecture Note Ser. 8, Cambridge Univ. Press, 1983, 1-59. | Zbl 0524.03040

[00005] [6] E. van Douwen, The integers and topology, in: K. Kunen and J. Vaughan (eds.), Handbook of Set-Theoretic Topology, North-Holland, 1984, 111-167.

[00006] [7] G. M. Fikhtengolz, Course of Differential and Integral Calculus, Nauka, Moscow, 1969 (in Russian).

[00007] [8] G. H. Hardy, Orders of Infinity. The 'Infinitärcalcül' of Paul du Bois Reymond, Cambridge Univ. Press, 1910. | Zbl 41.0303.01

[00008] [9] F. Hausdorff, Summen von 1 Mengen, Fund. Math. 26 (1936), 241-255.

[00009] [10] T. Jech, Set Theory, Addison-Wesley, 1978.

[00010] [11] T. Jech, Distributive laws, in: D. Monk (ed.), Handbook of Boolean Algebras, North-Holland, 1989, 317-332.

[00011] [12] K. Kunen, Set Theory. An Introduction to Independence Proofs, North-Holland, 1980.

[00012] [13] S. Shelah, Proper Forcing, Lecture Notes in Math. 940, Springer, 1982.

[00013] [14] S. Shelah and O. Spinas, The distributivity numbers of P(ω)/fin and its square, Trans. Amer. Math. Soc., to appear. | Zbl 0943.03036

[00014] [15] P. Vojtáš, Boolean isomorphism between partial orderings of convergent and divergent series and infinite subsets of ℕ, Proc. Amer. Math. Soc. 117 (1993), 235-242. | Zbl 0765.03023

[00015] [16] P. Vojtáš, On ω* and absolutely divergent series, Topology Proc. 19 (1994), 335-348. | Zbl 0840.03033

[00016]