Spaces of upper semicontinuous multi-valued functions on complete metric spaces
Sakai, Katsuro ; Uehara, Shigenori
Fundamenta Mathematicae, Tome 159 (1999), p. 199-218 / Harvested from The Polish Digital Mathematics Library

Let X = (X,d) be a metric space and let the product space X × ℝ be endowed with the metric ϱ ((x,t),(x’,t’)) = maxd(x,x’), |t - t’|. We denote by USCCB(X) the space of bounded upper semicontinuous multi-valued functions φ : X → ℝ such that each φ(x) is a closed interval. We identify φUSCCB(X) with its graph which is a closed subset of X × ℝ. The space USCCB(X) admits the Hausdorff metric induced by ϱ. It is proved that if X = (X,d) is uniformly locally connected, non-compact and complete, then USCCB(X) is homeomorphic to a non-separable Hilbert space. In case X is separable, it is homeomorphic to 2(2).

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:212389
@article{bwmeta1.element.bwnjournal-article-fmv160i3p199bwm,
     author = {Katsuro Sakai and Shigenori Uehara},
     title = {Spaces of upper semicontinuous multi-valued functions on complete metric spaces},
     journal = {Fundamenta Mathematicae},
     volume = {159},
     year = {1999},
     pages = {199-218},
     zbl = {0944.54013},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv160i3p199bwm}
}
Sakai, Katsuro; Uehara, Shigenori. Spaces of upper semicontinuous multi-valued functions on complete metric spaces. Fundamenta Mathematicae, Tome 159 (1999) pp. 199-218. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv160i3p199bwm/

[00000] [BP] C. Bessaga and A. Pełczyński, Selected Topics in Infinite-Dimensional Topology, Monograf. Mat. 58, Polish Sci. Publ., Warszawa, 1975. | Zbl 0304.57001

[00001] [Bo] C. R. Borges, A study of absolute extensor spaces, Pacific J. Math. 31 (1969), 609-617; Absolute extensor spaces: a correction and an answer, ibid. 50 (1974), 29-30. | Zbl 0199.25701

[00002] [Ca] R. Cauty, Rétractions dans les espaces stratifiables, Bull. Soc. Math. France 102 (1974), 129-149. | Zbl 0292.54015

[00003] [Cu] W. H. Cutler, Negligible subsets of infinite-dimensional Fréchet manifolds, Proc. Amer. Math. Soc. 23 (1969), 668-675.

[00004] [Fe1] V. V. Fedorchuk, On certain topological properties of completions of function spaces with respect to Hausdorff uniformity, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 1991, no. 4, 77-80 (in Russian); English transl.: Moscow Univ. Math. Bull. 46 (1991), 56-58.

[00005] [Fe2] V. V. Fedorchuk, Completions of spaces of functions on compact spaces with respect to the Hausdorff uniformity, Trudy Sem. Petrovsk. 18 (1995), 213-235 (in Russian); English transl.: J. Math. Sci. 80 (1996), 2118-2129. | Zbl 0857.54020

[00006] [FK] V. V. Fedorchuk and H.-P. A. Künzi, Uniformly open mappings and uniform embeddings of function spaces, Topology Appl. 61 (1995), 61-84. | Zbl 0834.54005

[00007] [Ku] K. Kuratowski, Topology, I, Polish Sci. Publ., Warszawa, 1966.

[00008] [Mi] E. Michael, Continuous selections, I, Ann. of Math. 63 (1956), 361-382. | Zbl 0071.15902

[00009] [SU] K. Sakai and S. Uehara, A Hilbert cube compactification of the Banach space of continuous functions, Topology Appl. 92 (1999), 107-118. | Zbl 0926.54008

[00010] [Sc] R. M. Schori, Topological stability for infinite-dimensional manifolds, Compositio Math. 23 (1971), 87-100. | Zbl 0219.57003

[00011] [To1] H. Toruńczyk, Concerning locally homotopy negligible sets and characterization of l2-manifolds, Fund. Math. 101 (1978), 93-110. | Zbl 0406.55003

[00012] [To2] H. Toruńczyk, On Cartesian factors and the topological classification of linear metric spaces, ibid. 88 (1975), 71-86. | Zbl 0308.57004

[00013] [To3] H. Toruńczyk, Characterizing Hilbert space topology, ibid. 111 (1981), 247-262. | Zbl 0468.57015

[00014] [To4] H. Toruńczyk, A correction of two papers concerning Hilbert manifolds, ibid. 125 (1985), 89-93.