We prove the following theorem: Given a⊆ω and , if for some and all u ∈ WO of length η, a is , then a is .We use this result to give a new, forcing-free, proof of Leo Harrington’s theorem: -Turing-determinacy implies the existence of .
@article{bwmeta1.element.bwnjournal-article-fmv160i2p101bwm, author = {Joan Hart and Kenneth Kunen}, title = {Bohr compactifications of discrete structures}, journal = {Fundamenta Mathematicae}, volume = {159}, year = {1999}, pages = {101-151}, zbl = {0966.54019}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv160i2p101bwm} }
Hart, Joan; Kunen, Kenneth. Bohr compactifications of discrete structures. Fundamenta Mathematicae, Tome 159 (1999) pp. 101-151. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv160i2p101bwm/
[00000] [Gn] R. O. Gandy, On a problem of Kleene's, Bull. Amer. Math. Soc. 66 (1960), 501-502. | Zbl 0097.24603
[00001] [Hg] L. A. Harrington, Analytic determinacy and , J. Symbolic Logic 43 (1978), 685-693.
[00002] [Hn] J. Harrison, Recursive pseudo-well-orderings, Trans. Amer. Math. Soc. 131 (1968), 526-543. | Zbl 0186.01101
[00003] [Kn] A. Kanamori, The Higher Infinite, 2nd printing, Springer, Berlin, 1997.
[00004] [Kc] A. S. Kechris, Measure and category in effective descriptive set-theory, Ann. Math. Logic 5 (1973), 337-384. | Zbl 0277.02019
[00005] [MW] R. Mansfield and G. Weitkamp, Recursive Aspects of Descriptive Set Theory, Oxford Univ. Press, Oxford, 1985. | Zbl 0655.03032
[00006] [Mr1] D. A. Martin, The axiom of determinacy and reduction principles in the analytical hierarchy, Bull. Amer. Math. Soc. 74 (1968), 687-689.
[00007] [Mr2] D. A. Martin, Measurable cardinals and analytic games, Fund. Math. 66 (1970), 287-291. | Zbl 0216.01401
[00008] [Ms] Y. N. Moschovakis, Descriptive Set Theory, North-Holland, Amsterdam, 1980.
[00009] [Sc1] G. E. Sacks, Countable admissible ordinals and hyperdegrees, Adv. Math. 19 (1976), 213-262. | Zbl 0439.03027
[00010] [Sc2] G. E. Sacks, Higher Recursion Theory, Springer, Berlin, 1990.
[00011] [Sm] R. L. Sami, Questions in descriptive set theory and the determinacy of infinite games, Ph.D. Dissertation, Univ. of California, Berkeley, 1976.
[00012] [Sl] J. Steel, Forcing with tagged trees, Ann. Math. Logic 15 (1978), 55-74. | Zbl 0404.03020
[00013] [Sr] J. Stern, Evaluation du rang de Borel de certains ensembles, C. R. Acad. Sci. Paris Sér. I 286 (1978), 855-857. | Zbl 0377.04007