On Whitney pairs
Csörnyei, Marianna
Fundamenta Mathematicae, Tome 159 (1999), p. 63-79 / Harvested from The Polish Digital Mathematics Library

A simple arc ϕ is said to be a Whitney arc if there exists a non-constant function f such that   limxx0(|f(x)-f(x0)|)/(|ϕ(x)-ϕ(x0)|)=0 for every x0. G. Petruska raised the question whether there exists a simple arc ϕ for which every subarc is a Whitney arc, but for which there is no parametrization satisfying   limtt0(|t-t0|)/(|ϕ(t)-ϕ(t0)|)=0. We answer this question partially, and study the structural properties of possible monotone, strictly monotone and VBG* functions f and associated Whitney arcs.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:212381
@article{bwmeta1.element.bwnjournal-article-fmv160i1p63bwm,
     author = {Marianna Cs\"ornyei},
     title = {On Whitney pairs},
     journal = {Fundamenta Mathematicae},
     volume = {159},
     year = {1999},
     pages = {63-79},
     zbl = {0936.26005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv160i1p63bwm}
}
Csörnyei, Marianna. On Whitney pairs. Fundamenta Mathematicae, Tome 159 (1999) pp. 63-79. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv160i1p63bwm/

[00000] [1] A. M. Bruckner, Creating differentiability and destroying derivatives, Amer. Math. Monthly 85 (1978), 554-562. | Zbl 0403.26002

[00001] [2] A. M. Bruckner, Differentiation of Real Functions, CRM Monograph Ser. 5, Amer. Math. Soc., Providence, 1994, pp. 88-89.

[00002] [3] M. Laczkovich and G. Petruska, Whitney sets and sets of constancy, Real Anal. Exchange 10 (1984-85), 313-323. | Zbl 0593.26007

[00003] [4] S. Saks, Theory of the Integral, Dover Publ., New York, 1964, pp. 228-240.

[00004] [5] H. Whitney, A function not constant on a connected set of critical points, Duke Math. J. 1 (1935), 514-517. | Zbl 0013.05801