A simple arc ϕ is said to be a Whitney arc if there exists a non-constant function f such that for every . G. Petruska raised the question whether there exists a simple arc ϕ for which every subarc is a Whitney arc, but for which there is no parametrization satisfying . We answer this question partially, and study the structural properties of possible monotone, strictly monotone and VBG* functions f and associated Whitney arcs.
@article{bwmeta1.element.bwnjournal-article-fmv160i1p63bwm, author = {Marianna Cs\"ornyei}, title = {On Whitney pairs}, journal = {Fundamenta Mathematicae}, volume = {159}, year = {1999}, pages = {63-79}, zbl = {0936.26005}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv160i1p63bwm} }
Csörnyei, Marianna. On Whitney pairs. Fundamenta Mathematicae, Tome 159 (1999) pp. 63-79. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv160i1p63bwm/
[00000] [1] A. M. Bruckner, Creating differentiability and destroying derivatives, Amer. Math. Monthly 85 (1978), 554-562. | Zbl 0403.26002
[00001] [2] A. M. Bruckner, Differentiation of Real Functions, CRM Monograph Ser. 5, Amer. Math. Soc., Providence, 1994, pp. 88-89.
[00002] [3] M. Laczkovich and G. Petruska, Whitney sets and sets of constancy, Real Anal. Exchange 10 (1984-85), 313-323. | Zbl 0593.26007
[00003] [4] S. Saks, Theory of the Integral, Dover Publ., New York, 1964, pp. 228-240.
[00004] [5] H. Whitney, A function not constant on a connected set of critical points, Duke Math. J. 1 (1935), 514-517. | Zbl 0013.05801